Quasi-two-dimensional diffusion of interacting protein monomers and dimers: a MPC simulation study

1. Biomacromolecular Systems and Processes (IBI-4), Institute of Biological Information Processing, Forschungszentrum Jülich,
2. Computational Biomedicine (INM-9/IAS-5), Institute for Advanced Simulation, Forschungszentrum Jülich, 52428 Jülich, Germany z.tan@fz-juelich.de

Abstract: Modeling lateral diffusion of proteins at a membrane

- Diffusion of proteins along a membrane: e.g., in postsynaptic signal transduction where specific proteins diffuse along a postsynaptic membrane, triggering a cascade of biochemical processes.
- Minimalistic model: Interacting Brownian particles embedded in a three-dimensional (3D) Newtonian bulk fluid but confined to a planar monolayer.
- Onset of large-scale collective diffusion under quasi-two-dimensional (Q2D) confinement
- Hydrodynamic retardation effects in concentrated Q2D protein solutions.
- More detailed model: Non-spherical proteins diffusing at a fluid-fluid interface.
- Effects of membrane-cytosol viscosity difference on diffusion of proteins.

1. Globular protein model

Globular proteins \Longrightarrow Brownian spheres

\diamond Proteins confined in-plane are interacting by short-range attraction (SA) and long-range electrostatic repulsion (LR):

$$
\beta U(r)=4 \epsilon\left[\left(\frac{\sigma}{r}\right)^{100}-\left(\frac{\sigma}{r}\right)^{50}\right]+\ell_{B} Z_{e f f}^{2} \frac{e^{-r / \lambda}}{r}
$$

\diamond Fluid motion is described by multiparticle collision dynamics (MPC) [1].

2. Anomalous enhancement of $\mathrm{H}(\mathrm{q})$

Hydrodynamic function $H(q)$: Characterizes strength of hydrodynamic interactions (HIs).

\diamond Divergence of $H(q)$ as q^{-1} for $q R \lesssim 1$:
\diamond Well captured by theoretical predictions (dashed) for Q2D hard-sphere systems.
\diamond SALR system: typical q^{-1} behavior at small q. Stronger attraction gives rise to higher amplitude of $H(q \approx 0)$.

Time-dependent hydrodynamic function: $H(q, t)=H_{s}(q, t)+H_{d}(q, t)$

\diamond Onset of HIs at $t \sim \tau_{h}$ (single protein vorticity diffusion time).
$\diamond H_{d}(q R \lesssim 1, t)>0$: enhancement of HIs. $H_{d}(1 \lesssim q R \lesssim \pi, t)<0$, backflow-induced anti-correlations. $H_{d}(q R \approx \pi, t)>0$: protein drags along its neighbours.

3. Hydrodynamic retardation in concentrated Q2D protein systems

Vorticity diffusion: Long-time tail in (angular) velocity autocorrelation functions $C_{V V}(t)\left(C_{\omega \omega}(t)\right)$.

\diamond Positive $t^{-3 / 2}\left(t^{-5 / 2}\right)$ long-time tail in (A)VAFs for concentrated Q2D hard-sphere systems at $t>\tau_{h}$.
\diamond Area fraction $\left(\phi_{2 D}\right)$-dependence of (A) VAFs is roughly captured using $\eta_{e f f}=\left(1+2.5 \phi_{2 D}\right) \eta$ for singleprotein (A)VAF functions (dashed).
\diamond Slower long-time decay of Q2D-SALR systems for stronger attraction.
Role of sound propagation: Distinct longitudinal current-current correlation function

$$
J_{d}(q, t)=\frac{1}{N q^{2}}\left\langle\sum_{i=1}^{N} \sum_{j=1}^{N} \mathbf{q} \cdot \mathbf{V}_{i}(t) \mathbf{V}_{j}(0) \cdot \mathbf{q} \exp \left[i \mathbf{q} \cdot\left(\mathbf{R}_{i}-\mathbf{R}_{j}\right)\right]\right\rangle
$$

t / τ_{c}

t / τ_{c}
\diamond Anti-correlations (dashed ellipse) in VAFs for Q2D hard-sphere systems at larger $\phi_{2 D}$ due to multiple scattering of sound.
\diamond Sound damping at small q persists much longer than single-particle sonic time τ_{c}.
\diamond Small, intermediate, and large wavenumber regions are observed consistent with those of $H_{d}(q, t)$.

4. MPC results for lateral protein diffusion near fluid-fluid interface

Coarse-grained protein-membrane-cytosol model using MPC
Hydrodynamic effects of fluid viscosity difference (viscosity ratio $\eta_{B} / \eta_{A}=0.21$)

Transversal mobility ${ }^{\mathrm{z}}$ coefficient x^{a}
Solid curves are numerical calculations from Ref. [2].
Dumbbell model of a GPCR at fluid-fluid interface $\left(\eta_{B} / \eta_{A}=0.21\right)$

References \& Acknowledgement
[1] G. Gompper,T. Ihle, D.M. Kroll, and R.G. Winkler, Adv. Polym. Sci., 2211 (2009)
[2] J. Bławzdziewicz, M.L. Ekiel-Jeżewska, and E. Wajnryb, J. Chem. Phys., 133, 114702, 2010.
Computing time granted by JARA-HPC on supercomputer JURECA at FZJ is gratefully acknowledged.

