Quasi-two-dimensional diffusion of interacting protein monomers and dimers: a MPC simulation study

Zihan Tan¹*, Jan K. G. Dhont¹, Vania Calandrini², and Gerhard Nägele¹

1. Biomacromolecular Systems and Processes (IBI-4), Institute of Biological Information Processing, Forschungszentrum Jülich, 52428 Jülich, Germany

2. Computational Biomedicine (INM-9/IAS-5), Institute for Advanced Simulation, Forschungszentrum Jülich, 52428 Jülich, Germany z.tan@fz-juelich.de

Abstract: Modeling lateral diffusion of proteins at a membrane

- **Diffusion of proteins along a membrane:** e.g., in postsynaptic signal transduction where specific proteins diffuse along a postsynaptic membrane, triggering a cascade of biochemical processes.
- Minimalistic model: Interacting Brownian particles embedded in a three-dimensional (3D) Newtonian bulk fluid but confined to a planar monolayer.
- Onset of large-scale collective diffusion under quasi-two-dimensional (Q2D) confinement
- Hydrodynamic retardation effects in concentrated Q2D protein solutions.
- More detailed model: Non-spherical proteins diffusing at a fluid-fluid interface.
- Effects of membrane-cytosol viscosity difference on diffusion of proteins.

1. Globular protein model

Globular proteins \implies Brownian spheres

♦ Proteins confined in-plane are interacting by short-range attraction (SA) and long-range electrostatic repulsion (LR):

3. Hydrodynamic retardation in concentrated Q2D protein systems

Vorticity diffusion: Long-time tail in (angular) velocity autocorrelation functions $C_{VV}(t)$ ($C_{\omega\omega}(t)$).

- \diamond Positive $t^{-3/2}$ ($t^{-5/2}$) long-time tail in (A)VAFs for concentrated Q2D hard-sphere systems at $t > \tau_h$.
- \diamond Area fraction (ϕ_{2D})-dependence of (A)VAFs is roughly captured using $\eta_{eff} = (1 + 2.5\phi_{2D})\eta$ for singleprotein (A)VAF functions (dashed).
- ♦ Slower long-time decay of Q2D-SALR systems for stronger attraction.

Role of sound propagation: Distinct longitudinal current-current correlation function

$$J_d(q,t) = \frac{1}{Nq^2} \left\langle \sum_{i=1}^N \sum_{j=1}^N \mathbf{q} \cdot \mathbf{V}_i(t) \mathbf{V}_j(0) \cdot \mathbf{q} \exp\left[i\mathbf{q} \cdot (\mathbf{R}_i - \mathbf{R}_j)\right] \right\rangle$$

- hardcore + short-range attraction long-range repulsion
- ♦ Fluid motion is described by multiparticle collision dynamics (MPC) [1].

2. Anomalous enhancement of H(q)

Hydrodynamic function H(q): Characterizes strength of hydrodynamic interactions (HIs).

- ♦ Divergence of H(q) as q^{-1} for $qR \leq 1$:
- ♦ Well captured by theoretical predictions (dashed) for Q2D hard-sphere systems.
- \diamond SALR system: typical q^{-1} behavior at small q. Stronger attraction gives rise to higher amplitude of $H(q \approx 0)$.

- ♦ Anti-correlations (dashed ellipse) in VAFs for Q2D hard-sphere systems at larger ϕ_{2D} due to multiple scattering of sound.
- \diamond Sound damping at small q persists much longer than single-particle sonic time τ_c .
- ♦ Small, intermediate, and large wavenumber regions are observed consistent with those of $H_d(q, t)$.

4. MPC results for lateral protein diffusion near fluid-fluid interface

Coarse-grained protein-membrane-cytosol model using MPC Hydrodynamic effects of fluid viscosity difference (viscosity ratio $\eta_B/\eta_A = 0.21$).

Solid curves are numerical calculations from Ref. [2].

Dumbbell model of a GPCR at fluid-fluid interface $(\eta_B/\eta_A = 0.21)$

- \diamond Onset of HIs at $t \sim \tau_h$ (single protein vorticity) diffusion time).
- $\diamond H_d(qR \leq 1, t) > 0$: enhancement of HIs. $H_d(1 \leq qR \leq \pi, t) < 0$, backflow-induced anti-correlations. $H_d(qR \approx \pi, t) > 0$: protein drags along its neighbours.

 \diamond Mean-squared displacement (MSD) of bead centers C_A and C_B , and hydrodynamic center of mobility C_{γ} . C_{γ} has smallest MSD, for $1 \ll$ $t/t_h^A \ll 10^2$.

 \diamond For $t \gg t_h^A$: MSD enhanced in presence of two interfaces (solid curves, marked by dashed ellipse).

References & Acknowledgement

[1] G. Gompper, T. Ihle, D.M. Kroll, and R.G. Winkler, Adv. Polym. Sci., 221 1 (2009)

[2] J. Bławzdziewicz, M.L. Ekiel-Jeżewska, and E. Wajnryb, J. Chem. Phys., 133, 114702, 2010.

Computing time granted by JARA-HPC on supercomputer JURECA at FZJ is gratefully acknowledged.