Non-perturbative studies of gluons and gluinos on the lattice

SAJID ALI¹, G. BERGNER², HENNING GERBER¹, JUAN CAMILO LOPEZ², ISTVÁN MONTVAY³, GERNOT MÜNSTER¹, STEFANO PIEMONTE⁴, PHILIPP SCIOR⁵

¹ ITP, University of Münster; ² TPI, FSU Jena; ³ DESY Hamburg; ⁴ University of Regensburg; ⁵ Bielefeld University

$\mathcal{N} = 1$ supersymmetric Yang-Mills

Why study supersymmetric gauge theories on the lattice?

- Extensions of the Standard Model of particle physics: Non-perturbative SUSY effects important to introduce SUSY breaking at low energies.
- Theoretical concepts: SUSY has led to very powerful analytical approaches to understand strong interactions, which need to be complemented and extended by numerical methods.

Specific for $\mathcal{N} = 1$ supersymmetric Yang-Mills theory

- gauge sector of SUSY extension of Standard Model
- simplest model with SUSY and local gauge invariance
- Orientifold planar equivalence: SUSY Yang-Mills theory with N_c colours is equivalent to QCD with a single quark flavour, $N_f = 1$ QCD, in the limit $N_c \to \infty$ with Quarks in antisymmetric repr. of $SU(N_c)$.

Non-perturbative Problems

- Spontaneous breaking of chiral symmetry $Z_{2N_c} \rightarrow Z_2$ $\longleftrightarrow \text{Gluino condensate} \quad <\lambda\lambda > \neq 0$
- Spectrum of bound states \rightarrow Supermultiplets
- Confinement of static quarks
- Breaking of SUSY in the continuum limit?
- SUSY restauration on the lattice

• Check predictions from effective Lagrangeans (Veneziano, Yankielowicz, ...)

Extrapolation to the supersymmetric continuum limit of SU(3) SUSY Yang-Mills theory

• continuity to semiclassical regime

Vector supermultiplet:

• Gauge field $A_{\mu}^{a}(x)$, $a = 1, \ldots, N_{c}^{2} - 1$, "Gluon" Gauge group SU(N_{c}) • Majorana-spinor field $\lambda^a(x)$, $\overline{\lambda} = \lambda^T C$, "Gluino" adjoint representation: $\mathcal{D}_{\mu}\lambda^{a} = \partial_{\mu}\lambda^{a} + g f_{abc}A^{b}_{\mu}\lambda^{c}$ • (auxiliary field $D^a(x)$) Lagrangean:

 $\mathcal{L} = \int d^2 heta \operatorname{Tr}(W^A W_A) + \text{h. c.} = rac{1}{4} F^{\ a}_{\mu
u} F^{\ a}_{\mu
u} + rac{1}{2} \overline{\lambda}^a \gamma_\mu (\mathcal{D}_\mu \lambda)^a + rac{1}{2} D^a D^a$

• SUSY: (on-shell) $\delta A^a_\mu = -2i\overline{\lambda}^a \gamma_\mu \varepsilon$, $\delta \lambda^a = -\sigma_{\mu\nu} F^a_{\mu\nu} \varepsilon$ • Gluino mass term $m_{\tilde{q}} \overline{\lambda}^a \lambda^a$ breaks SUSY softly. • Differences to QCD:

> λ : 1.) Majorana, " $N_f = \frac{1}{2}$ " 2.) adjoint representation of $SU(N_c)$

• Spontaneous breaking of chiral symmetry:

U(1)_{λ} (R-symmetry): $\lambda' = e^{-i\varphi\gamma_5}\lambda$, $\overline{\lambda}' = \overline{\lambda} e^{-i\varphi\gamma_5}$ Anomaly: $U(1)_{\lambda} \rightarrow Z_{2Nc}$ Spontaneous breaking $Z_{2N_c} \rightarrow Z_2$ by Gluino condensate $\langle \lambda \lambda \rangle \neq 0$ \leftrightarrow first order phase transition at $m_{\tilde{q}} = 0$

Supersymmetric QCD

- additional quarks ψ and squarks Φ_i in fundamental representation
- covariant derivatives, mass terms for (ψ, Φ_i)
- Yukawa interactions and scalar potential

 $i\sqrt{2}g\bar{\lambda}^{a}\left(\Phi_{1}^{\dagger}T^{a}P_{+}+\Phi_{2}T^{a}P_{-}\right)\psi$ $-i\sqrt{2}g\bar{\psi}\left(P_{-}T^{a}\Phi_{1}+P_{+}T^{a}\Phi_{2}^{\dagger}\right)\lambda^{a}$

Spectrum of bound states

Expect colour neutral bound states of gluons and gluinos \rightarrow Supermultiplets

Predictions from effective Lagrangeans[1, 2]:

chiral supermultiplet (Veneziano, Yankielowicz) • 0^- gluinoball a - η' $\overline{\lambda}\gamma_5\lambda$ \sim • 0^+ gluinoball a - f_0 $\overline{\lambda}\lambda$ \sim • spin $\frac{1}{2}$ gluino-glueball $\sim \sigma_{\mu\nu} \operatorname{Tr} (F_{\mu\nu} \lambda)$

mixing of multiplets possible

Generalization (Farrar, Gabadadze, Schwetz) additional chiral supermultiplet • 0^- glueball

• 0^+ glueball

• gluino-glueball

Bound states on the lattice

- Glueballs: 0^+ , $0^- \cong \Box$ • Gluino-glueballs, Spin $\frac{1}{2}$ Majorana: $\chi_{\alpha} \simeq \frac{1}{2} F_{\mu\nu}^{\ a} (\sigma_{\mu\nu})_{\alpha\beta} \lambda_{\beta}^{a}$
- Gluino-balls: $\overline{\lambda}\gamma_5\lambda$: **a** η' , 0⁻, $\overline{\lambda}\lambda$: **a** f_0 , 0⁺
- Mixing of Glueballs and Gluino-balls

Effective masses

Continuum limit

parameter ranges: $0.2 < am_{a-\pi} < 0.7$, lattice spacing $0.053 \,\mathrm{fm} < a < 0.082 \,\mathrm{fm}$, lattice sizes $12^3 \times 24$ to $24^3 \times 48$

Fit	$w_0 m_{g ilde{g}}$	$w_0 m_{0^{++}}$	$w_0 m_{\mathrm{a}-\eta'}$
linear fit	0.917(91)	1.15(30)	1.05(10)
quadratic fit	0.991(55)	0.97(18)	0.950(63)
SU(2) SYM	0.93(6)	1.3(2)	0.98(6)

(in units of the gradient flow scale w_0)

SUSY breaking on the lattice:

- Local lattice theory: SUSY breaking unavoidable at any finite lattice spacing
- No general solution by Ginsparg-Wilson relation found (so far)
- Necessary to find specific solution for the model under consideration Approach for SUSY Yang-Mills theory (Curci, Veneziano) 1. Wilson action:

$$S = -\frac{\beta}{N_c} \sum_{p} \operatorname{Re} \operatorname{Tr} U_p$$

$$\left\{ \overline{\lambda}_x^a \lambda_x^a - K \sum_{\mu=1}^4 \left[\overline{\lambda}_{x+\hat{\mu}}^a V_{ab,x\mu} (1+\gamma_{\mu}) \lambda_x^b + \overline{\lambda}_x^a V_{ab,x\mu}^t (1-\gamma_{\mu}) \lambda_{x+\hat{\mu}}^b \right] \right\}$$

$$K = \frac{1}{2\pi m_0} \quad \text{hopping parameter,} \quad m_0 : \text{bare gluino mass}$$

 $V_{ab,x\mu} = 2 \operatorname{Tr} \left(U_{x\mu}^{\dagger} T_a U_{x\mu} T_b \right),$ adjoint link variables

Simulation details

Algorithms

• TS-PHMC and RHMC algorithm

Sign Problem

Fermion action:

$$S_f = \frac{1}{2}\overline{\lambda}Q\lambda = \frac{1}{2}\lambda M\lambda, \qquad M \equiv CQ$$
$$\int [d\lambda] e^{-S_f} = Pf(M) = \pm\sqrt{\det Q}$$

Effective gauge field action

$$S_{\text{eff}} = -\frac{\beta}{N_c} \sum_{p} \operatorname{Re} \operatorname{Tr} U_p - \frac{1}{2} \log \det Q[U]$$

Reweighting with sign Pf(M)

- Wilson fermions: mild sign problem, vanishes in continuum limit
- sign Pf(M): real negative eigenvalues of Q

- overlap fermions implement chirals symmetry on the lattice
- eigenvalue spectrum on circle
- RHMC + Overlap: stable polynomial approximation of sign-function to order N:

$$D_{\rm ov} = \frac{1}{2} + \frac{1}{2} \gamma_5 {\rm sign}(\gamma_5 D_W)$$

Summary

- finalized analysis of SU(2) SUSY Yang-Mills particle spectrum [3]
- investigated phase transitions of SU(2) SUSY Yang-Mills [4, 5]
- most recently: final continuum extrapolations of the bound state spectrum of SU(3) SUSY Yang-Mills (gauge group of QCD) [6, 7]

SUSY breaking under control

- formation of bound state multiplets verified by numerical investigations
- SUSY restoration verified by Ward identities [8]

Outlook

- Overlap formulation as alternative, in particular for investigations of chiral symmetry breaking
- extensions to SQCD under investigation: mixed representations (fund.+adjoint), scalar fields, tuning

References

- In recent studies of SU(3) SUSY Yang-Mills: one-loop O(a) improvement by clover term.
- 2. Tuning towards the chiral supersymmetric continuum limit:

• Wilson term breaks chiral symmetry and SUSY

 $2m_0 + 8$

- only tuning of gluino mass required to recover both symmetries in the continuum limit
- practical implementation: extrapolation to vanishing adjoint pion mass $(m_{a-\pi})$, cross check with SUSY Ward identities

Challenging extension towards supersymmetric QCD

• Yukawa couplings and scalar potential need to be fine tuned • order of 10 tuning parameters

• reduced tuning for chiral symmetric formulations (overlap fermions)

• not relevant for the current pa- -0.6 rameter range

Challenging measurement of bound state operators

• Flavour singlet meson operators with disconnected contributions

• Gluino-glue: variational methods (optimized ground state overlap)

• Glueballs, mixed with Gluino-balls: variational methods in large operator basis

• Baryon operators: spectacle contributions

[1] G. Veneziano and S. Yankielowicz, Phys. Lett. B 113 (1982) 231. [2] G. R. Farrar, G. Gabadadze and M. Schwetz, Phys. Rev. D 58 (1998) 015009. [3] G. Bergner, P. Giudice, I. Montvay, G. Münster and S. Piemonte, JHEP **1603** (2016) 080. [4] G. Bergner, P. Giudice, G. Münster, S. Piemonte and D. Sandbrink, JHEP 1411 (2014) 049. [5] G. Bergner, S. Piemonte and M. Ünsal, JHEP 1811 (2018) 092.

[6] S. Ali, G. Bergner, H. Gerber, I. Montvay, G. Münster, S. Piemonte and P. Scior, Phys. Rev. Lett. **122** (2019) 221601.

[7] S. Ali, G. Bergner, H. Gerber, S. Kuberski, I. Montvay, G. Münster, S. Piemonte and P. Scior, JHEP 1904 (2019) 150.

[8] S. Ali, G. Bergner, H. Gerber, I. Montvay, G. Münster, S. Piemonte and P. Scior, Eur. Phys. J. C 78 (2018) 404.