The Spin of the Proton

Motivation

The proton consists of two valence up, u, quarks, one down, d, quark together with a 'sea' of quark antiquark pairs, $\bar{u}-u, \bar{d}-d, \bar{s}-s$, and gluons, g. How each constituent contributes to the total spin of the proton has remained a mystery for many years. In particular the quark contribution is much smaller than expected. We discuss here our lattice QCD determination of the quark contribution, using a novel technique, based on a field theoretic application of the Feynman-Hellmann theorem.
TThere are two common spin decompostions or 'schemes: Jaffer
Manohar (IM) and Ji: They both have a common quark spin term,
$\Delta \Sigma / 2$ but other pieces var. In particuluar the JM approach has a
gluon spin piece, ΔG, which can be mesusted in pp mactines, while
the Ji approach is more suitable for poalisised IIS and DVCS Processes
(and aso alatice QCD determinations).
Proton spin $\frac{1}{2}$ can be decomposed as
[Ji, [1]]

$$
\frac{1}{2}=\frac{1}{2} \Delta \Sigma+\sum_{q} L_{q}+J_{g}
$$

Quark spin
$\Delta \Sigma=\Delta u+\Delta d+\Delta s \quad\left\{\begin{array}{c}\Delta q \propto\langle p| \hat{A}_{3}|p\rangle \\ p \sim u\left(u^{T} C \gamma_{5} d\right) \quad A_{3}=\bar{q} \gamma_{3} \gamma_{5} q\end{array}\right.$

- Expectation: Quark model

physicsworld

$\Delta \Sigma \sim 1$ but 'Spin crisis': $\Delta \Sigma$ small $\sim 35 \%$ of total spin
$\Delta s=0$ but perhaps $\sim-10 \%$
[We shall only consider $\Delta s, \Delta \Sigma$ evaluations here but the others can be determined.]

The Lattice approach

- Euclideanise space - time
- Discretise space - time (lattice spacing a $\rightarrow 0$)
- Path Integral \rightarrow partition function which is a
$V_{s} \times T \times d \times\left(n_{c}^{2}-1\right) \sim 48^{3} \times 96 \times 4 \times 8$
$\sim O(500,000,000)$ dimensional integral
\Rightarrow Monte Carlo techniques for:

$$
\langle\mathcal{O}\rangle=\frac{1}{\mathcal{Z}} \int[d U][d q d \bar{q}] \mathcal{O} e^{S}
$$

$S=S_{g}+S_{F}$ where S_{g} is gluon action;
S_{F} is fermion action given by
$S_{F}=\sum_{q=u, d, s} \bar{q} D q, \quad D$ is Dirac fermion matrix
Matrix elements are found from three-pt correlation functions, eg
$\left\langle p(t) A_{3}(\tau) p(0)\right\rangle \propto\langle p| \widehat{A}_{3}|p\rangle \quad\left[\frac{1}{2} T \gg t \gg \tau \gg 0\right]$

Matrix elements

$D^{-1}=$ fermion propagator $=? \longleftarrow$
We need to find all fermion propagator connections

$$
u u d \bar{q} q \bar{u} \bar{u} \bar{d} \quad q=u \text { or } d \text { or } s
$$

giving quark-line connected and quark-line disconnected diagrams in a background gluon field.

The major technical problem is the evaluation of the quark-line disconnected terms - these are short distance quantities and suffer numerically from large fluctuations.
While all $\Delta q=\Delta q^{\text {con }}+\Delta q^{\text {dis }}$ have quark line disconnected pieces this is particularly obvious for Δs, which only has a disconnected piece.

References

[1] X. Ji, Phys. Rev. Lett. 78 (1997) 610, [arXiv:hep-ph/9603249].
[2] A. J. Chambers et al. [CSSM-QCDSF-UKQCD], Phys. Rev. D 92 (2015) 114517, [arXiv:1508.06856 [hep-lat]].
[3] R. Horsley et al. [QCDSF-UKQCD Collaboration], PoS LATTICE 2018 (2018) 119, [arXiv:1901.04792 [hep-lat]].
[4] S. Aoki et al. [Flavour Lattice Averaging Group], arXiv:1902.08191 [hep-lat].
[5] D. Boer, DIS2019, arXiv:1907.09344 [hep-ph]; M. G. Echevarria et al., SPIN2018, arXiv:1903.03379 [hep-ph].

Feynman-Hellmann (FH)

Replace, eg

$$
S \rightarrow S(\lambda)=S+\lambda \sum_{q, x} \bar{q}(x) \gamma_{3} \gamma_{5} q(x)
$$

This choice determines $\Delta \Sigma$. Then (FH)

$$
\left.\frac{\partial E_{p}(\lambda)}{\partial \lambda} \right\rvert\, \propto\langle p| \widehat{A}_{3}|p\rangle \propto \Delta \Sigma
$$

seen by $\partial / \partial \lambda$ of two-pt correlation function $\langle p(t) p(0)\rangle_{\lambda}=A_{p}(\lambda) \exp \left(-E_{p}(\lambda) t\right)$.
Constraints on the action means that the energy can develop an imaginary part, $E \rightarrow E+\phi$.

Strategy for FH application

Modify matrix before quark propagator in- version	Modify field weighting during configuration generation
$D^{\prime-1}=[D+\lambda O]^{-1}$	$\operatorname{det} D^{\prime} e^{-S_{g}}=\operatorname{det}[D+\lambda O] e^{-S_{g}}$
Inserts connected contributions on every line:	Access disconnected contributions:
$\left.\frac{\partial}{\partial \lambda} D^{\prime-1}\right\|_{\lambda=0}=D^{-1} O D^{-1}$	$\left.\frac{\partial}{\partial \lambda} \operatorname{det} D^{\prime}\right\|_{\lambda=0}=\operatorname{tr}\left(D^{-1} O\right) \operatorname{det} D$
Gives connected insertation in LH plot	Gives disconnected insertion on RH plot Easy to implement

Typical gradient example, [3]

Results

- (Various) $N_{f}=2+1$ dynamical fermion results
- Red circles are our results, [2, 3]; triangles are comparison results; the FLAG19 lattice review result [4] is also shown

Conclusions

- Result for $\Delta \Sigma$ slightly larger than present experimental result
- Further simulations at additional quark masses to extrapolate matrix element using $S U(3)$ flavour breaking expansion, [3]
- Further experiments [5] planned to measure all components of spin decomposition at the (proposed) Electron-lon-Collider (EIC) and LHC

