Proton structure from lattice QCD

Jeremy Green, in collaboration with Michael Engelhardt, Nesreen Hasan, Stefan Krieg, Stefan Meinel, John Negele, Andrew Pochinsky, Giorgio Silvi, and Sergey Syritsyn

Electromagnetic form factors

The distributions of charge and magnetization in a proton are probed in elastic electron-proton scattering.

Photon-proton vertex is parameterized by two form factors,

$$
\left\langle p^{\prime}\right| J_{\mu}|p\rangle=\bar{u}\left(p^{\prime}\right)\left[\gamma_{\mu} F_{1}\left(Q^{2}\right)+\frac{i \sigma_{\mu v}\left(p^{\prime}-p\right)^{v}}{2 m} F_{2}\left(Q^{2}\right)\right] u(p), Q^{2}=-\left(p^{\prime}-p\right)^{2}
$$

These combine to form the electric and magnetic form factors,
$G_{E}\left(Q^{2}\right)=F_{1}\left(Q^{2}\right)-\frac{Q^{2}}{4 m^{2}} F_{2}\left(Q^{2}\right) \quad \rightarrow$ Fourier transform of charge density $G_{M}\left(Q^{2}\right)=F_{1}\left(Q^{2}\right)+F_{2}\left(Q^{2}\right) \quad \rightarrow$ Fourier transf. of magnetization density. Near $Q^{2}=0$ they contain key properties of the proton:

$$
\begin{aligned}
\text { electric charge } & 1=G_{E}(0) \\
\text { rms charge radius } & r_{E}^{2}=-\left.6 \frac{d G_{E}}{d Q^{2}}\right|_{Q^{2}=0} \\
\text { magnetic moment } & \mu=G_{M}(0) .
\end{aligned}
$$

Muonic hydrogen experiment led to very precise r_{E} but also radius puzzle.

Newer ep scattering and electronic hydrogen spectroscopy experiments have cast doubt on precision of older measurements.
A. Beyer et al., Science 358, 79-85 (2017), H. Fleurbaey et al., Phys. Rev. Lett. 120, 183001 (2018)
N. Bezginov et al., Science 365, 1007-1012 (2019), W. Xiong et al., Nature 575, 147-150 (2019).

Finite-volume effects in form factors (preliminary)
Lattice calculations are done in periodic spatial volume of size L^{3}.
Generically effect on nucleon observables is suppressed $\sim e^{-m_{\pi} L}$
Volume also constrains Q^{2} : momenta $p_{j}=2 \pi n / L, n \in \mathbb{Z}$.
How to study L dependence at fixed Q^{2} ? Use twisted boundary cond.:

$$
q(\vec{x})=e^{i \theta} q(\vec{x}+\hat{\jmath} L) \Longrightarrow p_{j}=(2 \pi n+\theta) / L, n \in \mathbb{Z}
$$

Lattice setup: $m_{\pi} \approx 250 \mathrm{MeV}, a=0.116 \mathrm{fm}$, two ensembles:

1. $32^{3} \times 48, m_{\pi} L=4.8$,
2. $24^{3} \times 48, m_{\pi} L=3.6$, plus twisted B.C. to match momenta.

Preliminary results for isovector G_{E} and G_{M} :

Plateaus for r_{E}^{2} and μ from derivative method:

$\sim-2 \%$ effect for r_{E}^{2} : smaller than ChPT and opposite sign.
$\sim-5 \%$ effect for μ : similar to ChPT.
Excited-state contributions are significant.

Neutron beta decay

In the Standard Model, neutrons decay by emitting a virtual W^{-}boson. The quark-level coupling to W bosons is of the form $V-A$. The baryon-level couplings are modified by QCD:

$$
g_{V} \approx 1, \quad g_{A} / g_{V}=1.2732(23) \text { PDG } 2019
$$

Precision β-decay experiments may be sensitive to beyond-the-Standard- ${ }^{n}$
Model physics by detecting scalar or tensor couplings.
Need to compute the corresponding "charges", g_{S} and g_{T} on the lattice
Lattice setup: $m_{\pi}=m_{\pi}^{\text {phys }}$, two ensembles: N. Hasan, JG et al, Phys. Rev. D 99, 114505 (2019)

1. $a=0.116 \mathrm{fm}, 48^{4}, m_{\pi} L=3.9$,
2. $a=0.093 \mathrm{fm}, 64^{4}, m_{\pi} L=4.0$.

Need to compute renormalization factors $Z_{A, S, T}$.

Two different intermediate renormalization schemes used

Reasonable agreement for $Z_{A, T}$
Large difference for Z_{S}
\rightarrow large uncertainty for $g s$.

Final results:

$$
g_{A}=1.265(49), \quad g_{T}=0.972(41), \quad g_{S}=0.927(303) .
$$

Large discrepancy between two renormalization schemes for scalar needs further study. Could affect results by other collaborations!

Reducing excited-state effects

Challenge in lattice calculations: can't exactly create proton.
Must use Euclidean time evolution to suppress excited states $\sim e^{-E t}$.
Can the standard creation operator χ_{1}^{\dagger} be improved?
JG et al., Phys. Rev. D 100, 074510 (2019)

$$
\begin{array}{llr}
\chi_{1} \sim(u u d)_{\frac{1}{2}} & \text { (standard) } & \text { Use variational setup: optimize } \\
\chi_{2} \sim(u u d)_{\frac{1}{2}} g & \text { (hybrid) } & \chi_{\mathrm{opt}}=c_{1} \chi_{1}+c_{2} \chi_{2}+c_{3} \chi_{3} \\
\chi_{3} \sim(u u d)_{\frac{3}{2}} g & \text { (hybrid) } &
\end{array}
$$

rid onorntorn

Hybrid operators chosen for their low computational cost

Optimized operator $\chi_{\text {opt }}$ has significantly reduced excited-state effects in g_{T} but increased effects in g_{A}. No universal improvement
Need to systematically target lowest-lying excitations!

