

Mathematical modeling for all-solid-state battery: Coordinate-free structural tensor

Tuan $Vo^{(1),(2)}$

(1) MathCCES, Center for Computational Engineering Science, RWTH Aachen University
 (2) IEK-2, Institute of Energy and Climate Research, Forschungszentrum Jülich

All-solid-state battery

Rechargeable Lithium-ion battery (LIB) stays at the heart of every energy storage system and electric vehicle. Undoubtedly, LIB benefits human life efficiently as well as friendly-environment. Besides, a more advanced LIB, so-called **all-solid-state battery** (ASSB), is introduced recently as ASSB is expected with non-inflammation and non-explosion as seen in common LIBs. Yet, defect due to polarization is one natural phenomenon of **solid electrolyte** (SE) to be tackled.

Mathematical model

Constitutive equation is first derived from considering local balance laws and enforcing sharper conditions to entropy inequality.

This poster is aimed to model the polarized SE with the use of **structural tensor**.

A sample of a typical all-solid-state battery and its non-scale hierarchical insight into structural layers.

A typical LIB includes three main components: cathode, anode and electrolyte. Different types of LIB have a variation of constitutive material composed of battery. An ASSB means that the three main components are **all made of solid material**.

• Local balance laws governing the infinitesimal elasticity embedded structural tensor:

- Balance of massBalance of linear momentumBalance of angular momentumBalance of energy
- $\dot{\rho} + \rho \operatorname{div} \boldsymbol{v} = 0$ $\rho \dot{\boldsymbol{v}} = \operatorname{div} \boldsymbol{\pi} + \rho \boldsymbol{b}$ $\boldsymbol{\pi}^{\top} = \boldsymbol{\pi}$ $\rho \dot{\boldsymbol{e}} = \boldsymbol{\pi} : \dot{\boldsymbol{\varepsilon}} + \rho r - \operatorname{div} \boldsymbol{q}$
- Entropy inequality

$$\rho \mathcal{D} := \boldsymbol{\pi} : \dot{\boldsymbol{\varepsilon}} - \rho \eta \dot{\theta} - \rho \dot{\Psi} - \frac{1}{\theta} \boldsymbol{q} \cdot \nabla \theta \ge 0$$

• Mathematical model:

where

$$+ \alpha (\delta_{ij}M_{kl} + M_{ij}\delta_{kl}) + 2(\mu_L - \mu_T) [\mathbb{I}_d]_{ijkl} + \beta M_{ij}M_k$$
$$[\mathbb{I}_d]_{ijkl} = \frac{1}{2} (d_i\delta_{jl}d_k + d_i\delta_{jk}d_l + d_j\delta_{ik}d_l + d_j\delta_{il}d_k)$$
$$\mathbb{I}_{ijkl} = \frac{1}{2} (\delta_{ik}\delta_{jl} + \delta_{il}\delta_{jk})$$

Modeling goal

Two main goals to model the solid electrolyte part of the all-solid-state battery is as follows:
1. To capture the **preferred direction** behavior of the solid electrolyte due to electric potential.
2. To satisfy **thermodynamic consistency**:

- ullet Conservation of mass, linear & angular momentum and energy for the solid electrolyte.
- Entropy inequality is guaranteed with sharper conditions, which lead to constitutive equation.

Continuum physics kinematic

Green-Lagrange strain tensor \boldsymbol{E} with respect to small displacement $\partial \boldsymbol{u}/\partial \boldsymbol{\xi} = \mathcal{O}(\epsilon), \ \epsilon \ll 1$: $\boldsymbol{E} = \frac{1}{2} \left(\boldsymbol{F}^{\top} \boldsymbol{F} - \boldsymbol{I} \right) = \frac{1}{2} \left(\frac{\partial \boldsymbol{u}}{\partial \boldsymbol{\xi}} + \left(\frac{\partial \boldsymbol{u}}{\partial \boldsymbol{\xi}} \right)^{\top} + \underbrace{\left(\frac{\partial \boldsymbol{u}}{\partial \boldsymbol{\xi}} \right)^{\top} \left(\frac{\partial \boldsymbol{u}}{\partial \boldsymbol{\xi}} \right)}_{\text{Neglected}} \right) \rightarrow \boldsymbol{\varepsilon} := \frac{1}{2} \left(\frac{\partial \boldsymbol{u}}{\partial \boldsymbol{\xi}} + \left(\frac{\partial \boldsymbol{u}}{\partial \boldsymbol{\xi}} \right)^{\top} \right)$

Polarization phenomenon

Due to a source of electric potential pointing from cathode (+) to anode (-) pole, a uniform electric field created has suppressed on the SE occupied between these two poles. Consequently, SE

Structural tensor

SE microstructure with structural tensor $\boldsymbol{M} = \boldsymbol{d} \otimes \boldsymbol{d}$ is defined by a symmetry group \mathbb{G} : $\mathbb{G} := \{\boldsymbol{Q}_{||_{\boldsymbol{d}}}, \boldsymbol{Q}_{\perp_{\boldsymbol{d}}}\} \subset \mathcal{O}(3),$ which leads to invariant free energy function $\hat{\Psi}$ under rotations followed by group \mathbb{G} : $\hat{\Psi}(\boldsymbol{\varepsilon}, \boldsymbol{M}) = \hat{\Psi}(\boldsymbol{Q}\boldsymbol{\varepsilon}\boldsymbol{Q}^{\top}, \boldsymbol{Q}\boldsymbol{M}\boldsymbol{Q}^{\top}) = \hat{\Psi}(\boldsymbol{\varepsilon}, \boldsymbol{M}) \quad \forall \ \boldsymbol{Q} \in \mathbb{G}.$

Next steps and future direction

- Time-dependent implementation, numerical analysis, verification and validation.
- Explicit description of coordinate-based polarization variation.
- Bridging scale into quantum physics: Update information from quantum for continuum.
 Capture a phenomenon so-called **dendrite formation**:

yields to a **preferred direction** under external deformations such as mechanical loading forces.

Contact

Tuan Vo · RWTH Aachen University · Email: tuan.vo@rwth-aachen.de

Dendrite formation: After a several number of charging cycles, dendrite branches are slowly formed and developed from Solid electrolyte interface (SEI) through grain boundaries.

References

[1] Vo T. Modeling the swelling phenomena of lithium-ion battery cells based on a numerical chemo-mechanical coupled approach. Master thesis, 2018.

[2] S. Braun, C. Yada and A. Latz. *Thermodynamically consistent model for Space-Charge-Layer formation in a solid electrolyte*. Journal of Physical Chemistry, 119, 22281-22288, 2015.

