
Going further (HazelHen, HLRS):

Application: Stokes flow
(motivated by Mantle Convection)

Direct solver: MUMPS
(Multifrontal Massively Parallel Solver)

Project TerraNeo:

Abstract: Multigrid methods play an important role in the numerical approximation of partial differential equations. As long as only a moderate number of processors is used, 
many alternatives can be used as solver for the coarsest grid. However, when the number of processors increases, then standard coarsening will stop while the problem is still large 
and the communication overhead for solving the corresponding coarsest grid problem may dominate. In this case, the coarsest grid must be agglomerated to only a subset of the 
processors. This article studies the use of sparse direct methods for solving the coarsest grid problem as it arises in a multigrid hierarchy. We use as test case a Stokes-type model 
and solve algebraic saddle point systems with up to O(1011) degrees of freedom on a current peta-scale supercomputer. We compare the sparse direct solver with a preconditioned 
minimal residual iteration and show that the sparse direct method can exhibit better parallel efficiency.
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Multigrid framework : HHG
(Hierarchical Hybrid Grids)

The framework:
 ↣ Structured refinement of unstruct. tetrahedral meshes
 ↣ Matrix-free, stencil-based kernels
 ↣ Native PMINRES solver on the coarse grid

The MG: All-at-once Uzawa MG method
 ⚠ Potential convergence issue on the coarse grid

Depending on the problem size/hardness

Tets. DoFs DoFs coarse
1 920 5.37E+09 9.22E+04
15 360 4.29E+10 6.96E+05

43 200 1.21E+11 1.94E+06

Results on the application
(JUWELS, JFZ)

Block Low Rank approximation

         Controlled accuracy
     and mem/flops reduction

  + single precision arithmetic

Impact of viscosity
ν(x, T) ↣ iso-viscous

     ↣ jump-410: marks asthenosphere frontier

Comparison PMINRES-MUMPS

    

        MUMPS

Three phases
 1. Analysis: ordering, scaling, 
symbolic factorization,
    2. Factorization: A=LU,
    3. Solve: Ly=b, then Ux=y

On the coarse grid
  - Input in COO format: need a fully 
assembled matrix,
 ++ Analysis and Factorization (most 
of the cost) only required once in MG,
 ++ Robust (but too accurate)

MUMPS solver: http://mumps-solver.org

Parallel sparse direct solver for A x = b 
based on the multifrontal scheme.

Stokes problem on a spherical shell:

with u: velocity, p: pressure, f: forcing term
       B.C  ↣ surface: Dirichlet from plate velocity data

      ↣ core-mantle: free-slip (simplification)
   ⚠ viscosity ν(x, T) impacts the coarse grid solver

Discretization: 
 lowest equal-order FE method + PSPG stabilization
Tetrahedral mesh hierarchy: uniform refinement

 ↣ 2 levels for C.G., 6 for the MG scheme

Proc.
PMINRES MUMPS

Coarse(s) Par. Eff. Coarse(s) Par. Eff.
1 920 3.1 1.00 0.16 1.00
15 360 21.0 0.73 2.32 0.87
43 200 28.3 0.66 12.08 0.76

Scalability issue: agglomeration 
technique

For Direct solvers: Crumbling of the granularity in sub-systems:
Communication ≫ Computation

   Sometimes less procs is better...
 Master-Slave⇒

       data agglomeration

   ~50 DoFs per proc
         at coarsest

p0 p1 p2 p3 p4 p5

Proc. DoFs coarse Visco.
PMINRES MUMPS
coarse(s) coarse(s)

40 9.22E+04
iso 1.0 0.16

jump 3.1 0.16

160 6.96E+05
iso 2.9 2.32

jump 21.0 2.32

225 1.94E+06
iso 3.4 11.51

jump 18.3 12.08

Proc.
PMINRES MUMPS-BLR-SP

fine(s) Coarse(s) fine(s) Coarse(s)
1 920 75.5 3.56 75.8 0.18
15 360 84.0 21.44 82.1 1.79
43 200 88.7 33.61 85.26 5.9
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