Plasma Wakefield Accelerators for High-Brightness Beams.

Ming Zeng¹⁾, Severin Diederichs¹⁾, Thales Silva²⁾, Jorge Vieira²⁾, Alberto Martinez de la Ossa¹⁾, Pardis Niknejadi¹⁾, and Jens Osterhoff¹⁾

¹⁾ Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany

²⁾ GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal

- length for extreme powers is of great interest.

earch-high-intensity-lasers (Credit: John Collier, courtesy of the National Academies)

Resizing of laser beam in plasma

Comparision simulations with or without plasma eyepiece

- Plasma acting as an adjustable eyepiece in a telescope system can effectively resize the petawatt laser beams.
- For the same effective focal spot size, the focal length can be largely reduced by using a plasma eyepiece.
- Such telescope system is easy to implement and can be widely adopted in the petawatt laser projects worldwide.

2. Positron acceleration in beam-driven plasma accelerators using plasma columns

- Due to the charge asymmetry, positron acceleration is challenging in plasma wakefield acceleration.
- A linear collider requires high-charge, lowemittance, low-energy-spread beams with a high accelerating gradient.
- No concept fulfills all the requirements so far.

Key result Using a plasma column instead of a homogenous plasma, allows for efficient and emittance-preserving positron acceleration.

Future plans Techniques to maintain a low energy-spread and a stability analysis of the concept are currently under investigation.

3. Positron acceleration using quasi-hollow channels generated by the plasma dynamics in the trail of the blowout

• We demonstrated stable and quality acceleration over 30cm propagation with no significant beam breakup.

