

3D Reconstruction of Nerve Fibers in the Human, the Monkey and the Rodent Brain

Oliver Bücker¹, Andreas Müller², Anna Lührs², Sascha Münzing³, Stefan Köhnen³, Philipp Schlömer³, Martin Schober³, Nicole Schubert³, Daniel Schmitz³, Markus Axer³

¹ Institute for Advanced Simulation, Jülich Supercomputing Centre (JSC), Mathematics and Education, Forschungszentrum Jülich, Germany ² Institute for Advanced Simulation, Jülich Supercomputing Centre (JSC), Simulation Laboratory Neuroscience, Forschungszentrum Jülich, Germany ³ Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich, Germany

3D-Polarized Light Imaging (3D-PLI) is a neuroimaging

technique that has opened up new avenues to study the complex architecture of nerve fibers in post mortem brains.

- This technique allows reconstructing three-dimensional pathways of nerve fibers with a resolution of a few micrometers by means of birefringence measurements of the brain tissue.
- In this project we analyze the birefringence measurements (images) of thousands of unstained histological brain sections obtained from different species (human, monkey, rodents).
- The computations are completely data driven and depend on the number and size of sections scanned at a few microns resolution.

Contact: o.buecker@fz-juelich.de

Member of the Helmholtz Association