Calculating the proton radius using lattice $Q C D$

Jeremy Green, in collaboration with Nesreen Hasan, Stefan Meinel, Michael Engelhardt,

 Stefan Krieg, John Negele, Andrew Pochinsky, and Sergey Syritsyn
Proton radius

The distributions of charge and magnetization in a proton are probed in elastic electron-proton scattering.

Photon-proton vertex is parameterized by two form factors,

$$
\left\langle p^{\prime}\right| J_{\mu}|p\rangle=\bar{u}\left(p^{\prime}\right)\left[\gamma_{\mu} F_{1}\left(Q^{2}\right)+\frac{i \sigma_{\mu v}\left(p^{\prime}-p\right)^{v}}{2 m} F_{2}\left(Q^{2}\right)\right] u(p), Q^{2}=-\left(p^{\prime}-p\right)^{2}
$$

These combine to form the electric and magnetic form factors,
$G_{E}\left(Q^{2}\right)=F_{1}\left(Q^{2}\right)-\frac{Q^{2}}{4 m^{2}} F_{2}\left(Q^{2}\right) \quad \rightarrow$ Fourier transform of charge density
$G_{M}\left(Q^{2}\right)=F_{1}\left(Q^{2}\right)+F_{2}\left(Q^{2}\right) \quad \rightarrow$ Fourier transf. of magnetization density.
Near $Q^{2}=0$ they contain key properties of the proton:

$$
\begin{aligned}
\text { electric charge } & 1=G_{E}(0) \\
\text { rms charge radius } & r_{E}^{2}=-\left.6 \frac{d G_{E}}{d Q^{2}}\right|_{Q^{2}=0} \\
\text { magnetic moment } & \mu=G_{M}(0) .
\end{aligned}
$$

Scattering experiments measure $G_{E}, G_{M} \rightarrow$ fitting vs. Q^{2} determines r_{E}. Alternatively: in hydrogen spectroscopy, the S orbitals are sensitive to r_{E} but P and others have a node at $x=0$ and are insensitive.

$$
\Delta E_{\text {finite }} \text { size } \propto r_{E}^{2} m_{e}^{3}
$$

1s 2s
2p
Since $m_{\mu} \approx 200 m_{e}$, this effect is much larger in muonic hydrogen.
Proton radius puzzle: muonic hydrogen experiment disagrees with electronic hydrogen and ep scattering!
electron-proton scattering

Hydrogen spectroscopy

- muonic Hydrogen

CODATA average

0.84	0.85	0.86	0.87	0.88	0.89
0.84	0.85	0.86	0.87	0.88	0.89

Lattice quantum chromodynamics (QCD)

QCD, the theory of quarks and gluons, is the elementary theory that describes protons and neutrons.
We perform calculations using the lightest three quarks: u, d, and s.
The proton has net quark content uud and the neutron udd.

(By MissMJ [CC-BY-3.0], via Wikimedia Commons)

Lattice QCD is a way of regularizing

 Euclidean-space QCD on a 4d grid so that the quantum path integral becomes finite-dimensional.- Quark fields q, \bar{q} live on lattice sites.
- Gluon field becomes gauge links U_{μ} between adjacent sites.
Lattice action has form $S[q, \bar{q}, U]=S_{g}[U]+\bar{q} D[U] q$ We integrate quarks analytically to get $S_{\text {eff }}[U]=S_{g}[U]-\log \operatorname{det} D[U]$.

Path integral can have $>10^{8}$ dimensions \rightarrow use Monte Carlo methods: generate stochastic samples U_{i} from distribution $p[U] \propto e^{-S_{\text {eff }}[U]}$.
On a cluster, it is natural to split the lattice into sublattices, each of which is contained on one MPI rank. Much of the work is spent on repeatedly solving $D\left[U_{i}\right] \psi=\eta$ to compute the quark propagator ψ from a source η, on gauge fields U_{i} that sample the path integral.

Protons and neutrons on the lattice
Compute two-point and three-point functions.

connected: can compute straightforwardly
disconnected: require additional stochastic estimation
Using ratios $C_{3 p t} / C_{2 p t}$ at large time separations (where excited states have died out), we can isolate $\left\langle p^{\prime}\right| J_{\mu}|p\rangle$ and then get G_{E} and G_{M}. Disconnected diagrams cancel out in the isovector (proton minus neutron) form factors.

Fitting form factors
Finite-volume momentum transfers take discrete values: $Q_{\min }^{2} \approx\left(\frac{2 \pi}{L}\right)^{2}$. Similar to scattering experiments, can determine radius by fitting. We use the z expansion, which conformally maps the domain for complex Q^{2} where $G\left(Q^{2}\right)$ is analytic to $|z|<1$, then uses a Taylor series:

$$
\begin{gathered}
z\left(Q^{2}\right)=\frac{\sqrt{t_{\mathrm{cut}}+Q^{2}}-\sqrt{t_{\mathrm{cut}}}}{\sqrt{t_{\mathrm{cut}}+Q^{2}}+\sqrt{t_{\mathrm{cut}}}} \\
G\left(Q^{2}\right)=\sum_{k} a_{k} z\left(Q^{2}\right)^{k}
\end{gathered}
$$

Rev. D 84, 073006 (2011)
Rather than simply truncating the series, we impose Gaussian priors on the higher coefficients $a_{k}, k>1$.

Directly calculating at $Q^{2}=0$
Imposing twisted boundary conditions on the quarks shifts the Fourier momenta:

$$
q_{\theta}(\vec{x})=e^{i \theta} q_{\theta}(\vec{x}+\hat{\jmath} L) \quad \Longrightarrow \quad p_{j}=\frac{2 \pi n+\theta}{L}, n \in \mathbb{Z}
$$

For connected diagrams, we can use a vector current $J_{\mu}=\bar{q}_{\theta^{\prime}} \gamma_{\mu} q_{\theta}$ that transitions between different twist angles. This allows for arbitrary adjustment of $p_{j}^{\prime}-p_{j}$ and thus arbitrary $Q^{2} \geq 0$.
Furthermore, it has been shown how to take $\frac{\partial}{\partial \theta}$ analytically.
G. M. de Divitis, R. Petronzio, N. Tantalo, Phys. Lett. B 718, 589 (2012)

Using the derivative method, we expect that radii can be computed up to $O\left(e^{-m_{\pi} L}\right)$ finite-volume effects. в. с. Tiburzi. Phys. Rev. D 90, 054508 (2014)

We applied this to isovector form factors:

$$
\begin{aligned}
\left.\frac{\partial}{\partial p_{j}}\left\langle p^{\prime}\right| J_{\mu}|p\rangle\right|_{\vec{p}^{\prime}=\vec{p}=0} & \rightarrow \kappa \equiv F_{2}(0), \\
\left.\frac{\partial^{2}}{\partial p_{j}^{2}}\left\langle p^{\prime}\right| J_{\mu}|p\rangle\right|_{\overrightarrow{p^{\prime}}=\vec{p}=0} & \rightarrow r_{1}^{2} \equiv-\left.6 \frac{d F_{1}}{d Q^{2}}\right|_{Q^{2}=0}
\end{aligned}
$$

Results for the radius were quite noisy. This motivated a new, mixed-derivative approach:

$$
\left.\frac{\partial^{2}}{\partial p_{j}^{\prime} \partial p_{j}}\left\langle p^{\prime}\right| J_{\mu}|p\rangle\right|_{\overrightarrow{p^{\prime}}=\vec{p}=0} \rightarrow r_{1}^{2}
$$

Preliminary results: isovector form factors
We use one 48^{4} lattice ensemble with $m_{u}=m_{d}$ and m_{s} set close to their physical values, and lattice spacing $a=0.116 \mathrm{fm}$.

Comparison with phenomenological curve by Kelly that describes scattering data.

New mixed-derivative method has reduced statistical uncertainty.

Discrepancy for $F_{2}(0)$ could be caused by finite-volume effects.
Analysis of increased statistics and study of excited-state effects is ongoing.

Preliminary results: disconnected diagrams
We use hierarchical probing to efficiently estimate the near-diagonal elements of $D[U]^{-1}$. For light quarks, we improve this by treating the low-lying modes of $D^{\dagger}[U] D[U]$ exactly.

Contribution to proton form factors is $\frac{1}{3}$ (light - strange $)_{\text {disconnected }}$.

