Calculating the proton radius using lattice QCD

Jeremy Green, in collaboration with Nesreen Hasan, Stefan Meinel, Michael Engelhardt, Stefan Krieg, John Negele, Andrew Pochinsky, and Sergey Syritsyn

Proton radius

The distributions of charge and magnetization in a proton are probed in elastic electron-proton scattering.

Photon-proton vertex is parameterized by two form factors,

 $\langle p'|J_{\mu}|p\rangle = \bar{u}(p')\left[\gamma_{\mu}F_{1}(Q^{2}) + \frac{i\sigma_{\mu\nu}(p'-p)^{\nu}}{2m}F_{2}(Q^{2})\right]u(p), \ Q^{2} = -(p'-p)^{2}.$

These combine to form the electric and magnetic form factors,

 $G_E(Q^2) = F_1(Q^2) - \frac{Q^2}{4m^2}F_2(Q^2) \rightarrow$ Fourier transform of charge density $G_M(Q^2) = F_1(Q^2) + F_2(Q^2) \rightarrow$ Fourier transf. of magnetization density. Near $Q^2 = 0$ they contain key properties of the proton:

> electric charge $1 = G_E(0)$ rms charge radius $r_E^2 = -6 \frac{dG_E}{dO^2}$

Fitting form factors

 Q^2

Finite-volume momentum transfers take discrete values: $Q_{\min}^2 \approx (\frac{2\pi}{L})^2$. Similar to scattering experiments, can determine radius by fitting. We use the *z* expansion, which conformally maps the domain for complex Q^2 where $G(Q^2)$ is analytic to |z| < 1, then uses a Taylor series:

e.g. R. J. Hill and G. Paz, Phys. Rev. D 84, 073006 (2011)

Rather than simply truncating the series, we impose Gaussian priors on the higher coefficients a_k , k > 1.

Directly calculating at $Q^2 = 0$

Imposing twisted boundary conditions on the quarks shifts the Fourier momenta:

Lattice quantum chromodynamics (QCD)					
	mass → ≈2.3 MeV/c ²	≈1.275 GeV/c²	≈173.07 GeV/c²	0	≈126 GeV/c²
	charge $\rightarrow 2/3$	^{2/3} C	2/3	0	• •
	spin $\rightarrow 1/2$	1/2	1/2	1 9	0
OCD, the theory of quarks and	au	charm	top	aluon	Higgs

$$q_{\theta}(\vec{x}) = e^{i\theta}q_{\theta}(\vec{x}+\hat{j}L) \implies p_{j} = \frac{2\pi n + \theta}{I}, \ n \in \mathbb{Z}.$$

For connected diagrams, we can use a vector current $J_{\mu} = \bar{q}_{\theta'} \gamma_{\mu} q_{\theta}$ that transitions between different twist angles. This allows for arbitrary adjustment of $p'_j - p_j$ and thus arbitrary $Q^2 \ge 0$. Furthermore, it has been shown how to take $\frac{\partial}{\partial \theta}$ analytically. G. M. de Divitiis, R. Petronzio, N. Tantalo, Phys. Lett. B 718, 589 (2012) Using the derivative method, we expect that radii can be computed up to

 $O(e^{-m_{\pi}L})$ finite-volume effects. B. C. Tiburzi, Phys. Rev. D 90, 054508 (2014)

We applied this to isovector form factors:

N. Hasan *et al.*, Phys. Rev. D **97**, 034504 (2018)

Results for the radius were quite noisy. This motivated a new, mixed-derivative approach:

 $\frac{\partial^2}{\partial p'_i \partial p_i} \langle p' | J_\mu | p \rangle \longrightarrow r_1^2$

gluons, is the elementary theory that describes protons and neutrons.

We perform calculations using the lightest three quarks: *u*, *d*, and *s*.

The proton has *net* quark content *uud* and the neutron *udd*.

(By MissMJ [CC-BY-3.0], via Wikimedia Commons)
Lattice QCD is a way of regularizing
Euclidean-space QCD on a 4d grid so that the
quantum path integral becomes finite-dimensional.
▶ Quark fields q, q live on lattice sites.

Solution Gluon field becomes gauge links U_{μ} between adjacent sites.

Lattice action has form $S[q, \bar{q}, U] = S_g[U] + \bar{q}D[U]q$. We integrate quarks analytically to get $S_{\text{eff}}[U] = S_g[U] - \log \det D[U]$.

Path integral can have > 10^8 dimensions \rightarrow use Monte Carlo methods: generate stochastic samples U_i from distribution $p[U] \propto e^{-S_{\text{eff}}[U]}$. On a cluster, it is natural to split the lattice into sublattices, each of which is contained on one MPI rank. Much of the work is spent on repeatedly

Preliminary results: isovector form factors

We use one 48⁴ lattice ensemble with $m_u = m_d$ and m_s set close to their physical values, and lattice spacing a = 0.116 fm.

solving $D[U_i]\psi = \eta$ to compute the quark propagator ψ from a source η , on gauge fields U_i that sample the path integral.

Protons and neutrons on the lattice

Compute two-point and three-point functions.

connected: can compute straightforwardly

disconnected: require additional stochastic estimation

Using ratios C_{3pt}/C_{2pt} at large time separations (where excited states have died out), we can isolate $\langle p'|J_{\mu}|p \rangle$ and then get G_E and G_M . Disconnected diagrams cancel out in the *isovector* (proton minus neutron) form factors.

Preliminary results: disconnected diagrams

We use hierarchical probing to efficiently estimate the near-diagonal elements of $D[U]^{-1}$. For light quarks, we improve this by treating the low-lying modes of $D^{\dagger}[U]D[U]$ exactly.

