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Proton radius

The distributions of charge and magnetization in a proton are
probed in elastic electron-proton sca�ering.
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Photon-proton vertex is parameterized by two form factors,

〈p′|Jµ |p〉 = ū(p′)
[
γµF1(Q2) +

iσµν(p′ − p)ν

2m
F2(Q2)

]
u(p), Q2 = −(p′ − p)2.

These combine to form the electric and magnetic form factors,

GE(Q2) = F1(Q2) −
Q2

4m2F2(Q2) → Fourier transform of charge density

GM(Q2) = F1(Q2) + F2(Q2) → Fourier transf. of magnetization density.

Near Q2 = 0 they contain key properties of the proton:

electric charge 1 = GE(0)

rms charge radius r2
E = −6

dGE

dQ2

����
Q2=0

magnetic moment µ = GM(0).

Sca�ering experiments measure GE , GM→ fi�ing vs. Q2 determines rE .
Alternatively: in hydrogen spectroscopy, the S
orbitals are sensitive to rE but P and others have a
node at x = 0 and are insensitive.

∆Efinite size ∝ r2
Em3

e
Since mµ ≈ 200me, this e�ect is much larger in muonic hydrogen.
Proton radius puzzle: muonic hydrogen experiment disagrees with
electronic hydrogen and ep sca�ering!
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La�ice quantum chromodynamics (QCD)

QCD, the theory of quarks and
gluons, is the elementary theory
that describes protons and neutrons.

We perform calculations using the
lightest three quarks: u, d , and s.

The proton has net quark content
uud and the neutron udd .

(By MissMJ [CC-BY-3.0], via Wikimedia Commons)
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La�ice QCD is a way of regularizing
Euclidean-space QCD on a 4d grid so that the
quantum path integral becomes finite-dimensional.
I �ark fields q, q̄ live on la�ice sites.
I Gluon field becomes gauge links Uµ between

adjacent sites.
La�ice action has form S[q, q̄,U] = Sg[U]+ q̄D[U]q.
We integrate quarks analytically to get
Se�[U] = Sg[U] − log det D[U].

Path integral can have > 108 dimensions→ use Monte Carlo methods:
generate stochastic samples Ui from distribution p[U] ∝ e−Se�[U].
On a cluster, it is natural to split the la�ice into subla�ices, each of which
is contained on one MPI rank. Much of the work is spent on repeatedly
solving D[Ui]ψ = η to compute the quark propagatorψ from a source η,
on gauge fields Ui that sample the path integral.

Protons and neutrons on the la�ice
Compute two-point and three-point functions.

connected: can compute straightforwardly

disconnected: require additional stochastic estimation

Using ratios C3pt/C2pt at large time separations (where excited states
have died out), we can isolate 〈p′|Jµ |p〉 and then get GE and GM.
Disconnected diagrams cancel out in the isovector (proton minus
neutron) form factors.

Fi�ing form factors
Finite-volume momentum transfers take discrete values: Q2

min ≈ (
2π
L )

2.
Similar to sca�ering experiments, can determine radius by fi�ing.
We use the z expansion, which conformally maps the domain for complex
Q2 where G(Q2) is analytic to |z | < 1, then uses a Taylor series:
Q

2
z

e.g. R. J. Hill and G. Paz, Phys. Rev. D 84, 073006 (2011)

z(Q2) =

√
tcut + Q2 −

√
tcut√

tcut + Q2 +
√

tcut

,

G(Q2) =
∑

k

akz(Q2)k.

Rather than simply truncating the series, we impose Gaussian priors on
the higher coe�icients ak, k > 1.

Directly calculating at Q2 = 0
Imposing twisted boundary conditions on the quarks shi�s the Fourier
momenta:

qθ(®x) = eiθqθ(®x + ̂L) =⇒ pj =
2πn + θ

L
, n ∈ Z.

For connected diagrams, we can use a vector current Jµ = q̄θ ′γµqθ that
transitions between di�erent twist angles. This allows for arbitrary
adjustment of p′j − pj and thus arbitrary Q2 ≥ 0.
Furthermore, it has been shown how to take ∂∂θ analytically.
G. M. de Divitiis, R. Petronzio, N. Tantalo, Phys. Le�. B 718, 589 (2012)

Using the derivative method, we expect that radii can be computed up to
O(e−mπL) finite-volume e�ects. B. C. Tiburzi, Phys. Rev. D 90, 054508 (2014)

We applied this to isovector
form factors:
N. Hasan et al., Phys. Rev. D 97, 034504 (2018)
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∂pj
〈p′|Jµ |p〉
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®p′=®p=0

→ κ ≡ F2(0),

∂2

∂p2
j

〈p′|Jµ |p〉
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®p′=®p=0

→ r2
1 ≡ −6

dF1

dQ2
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Q2=0
.

Results for the radius were quite noisy. This motivated a new,
mixed-derivative approach:

∂2

∂p′j∂pj
〈p′|Jµ |p〉

�����
®p′=®p=0

→ r2
1

Preliminary results: isovector form factors
We use one 484 la�ice ensemble with mu = md and ms set close to their
physical values, and la�ice spacing a = 0.116 fm.
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Comparison with
phenomenological curve by
Kelly that describes
sca�ering data.

New mixed-derivative
method has reduced
statistical uncertainty.

Discrepancy for F2(0) could
be caused by finite-volume
e�ects.
Analysis of increased
statistics and study of
excited-state e�ects is
ongoing. 0.5
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Preliminary results: disconnected diagrams
We use hierarchical probing to e�iciently estimate the near-diagonal
elements of D[U]−1. For light quarks, we improve this by treating the
low-lying modes of D†[U]D[U] exactly.
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Contribution to proton form factors is 1
3(light − strange)disconnected.


