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 continuum limit of the Nf=12 step β-function 
The plot from [2], referred as “this work” in the 
plot, summarizes the fate of the IRFP reported in 
[1].  Ref. 8 from [2] in the plot is the original 
publication of the IRFP by the LSD collaboration:

We are reporting new work which extends the 
three points of this plot into the g2 ~ 7 region 
where the new IRFP location moved in [3].

Recent results from the 5-loop β-function 
calculations do not show IRFP at Nf=12 which 
only appears at NF=13 for the 5-loop 
β-function. 3-loop and 4-loop calculations 
indicated IRFP at Nf=12 before.

The scale-dependent step beta function is the 
target of our computational strategy:

the origin of the controversy:

More on the fate of the  conformal fixed point with twelve massless fermions

presented by the Lattice Higgs collaboration:   
Zoltan Fodor, Kieran Holland, Julius Kuti, Daniel Nogradi, and  Chik Him Wong 

motivation of the work:
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finite four-dimensional volume and the boundary condition of the gauge field is kept periodic.
The new running coupling scheme was tested with four massless fermions in the fundamental
representation of the SU(3) color gauge group. It performs very well, with new plans for
applications in BSM gauge theories. The measured renormalized couplings are very accu-
rate, the scheme defines a one-parameter family which can be adjusted to several goals, and
tunneling appears to be suppressed allowing to probe stronger renormalized gauge couplings.

Lüscher has shown in the infinite volume limit that the gradient flow of the gauge field
energy can be expanded for small flow-time t into a power series of the renormalized coupling
�(q) of the MS scheme [205],
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Fig. 5: The top plot shows extrapolation to the
continuum step function with scale factor s = 1.5
and stepping from the targeted renormalized cou-
pling g2 = 1.9 in the continuum. The physical
size L is held fixed in some units, while the ratio
a2/L2 is extrapolated to zero with the expected
linear behavior. The lower plot shows agreement
in the continuum limit with the perturbative step
function (related to the �-function) at weak cou-
pling.

Since the gradient flow probes the gauge field
on the scale

⇧
8t, a new running coupling can be

defined as a function of L in finite volume V = L4

while holding c = (8t)1/2/L fixed:

�c(L) =
4⇤

3

⇤t2E(t)⌅
1 + ⇥(c)

.

This volume dependent coupling includes the
normalization factor ⇥(c) to match any defini-
tion of the renormalized coupling on the 1-loop
level [99]. It is not dependent on the coupling
and given by

⇥(c) = ⌅4
3(e

�1/c2)� 1� c4⇤2

3
,

where ⌅3 is the third Jacobi function. In tests
with four massless fermions in the fundamental
representation of the SU(3) color gauge group,
c = 0.3 was chosen probing the renormalized cou-
pling on the scale µ = 1/3L.

The fact that the volume is finite necessi-
tates the separation of the gauge Fourier modes
into zero and non-zero modes. The non-zero
modes can be treated in 1-loop perturbation the-
ory while the non-trivially interacting zero modes
need to be treated exactly. The result at leading
order contains both algebraically and exponen-
tially suppressed finite volume correction terms
relative to the infinite volume result.

Although the method passed all the necessary
tests in the simple gauge model with four fun-
damental flavors, interesting BSM applications
have to come as part of new objectives in Kuti’s proposed research.

t is the gradient flow time   
Running coupling definition (clover operator range is ~ (8t)1/2) :
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continuum step function with scale factor s = 1.5
and stepping from the targeted renormalized cou-
pling g2 = 1.9 in the continuum. The physical
size L is held fixed in some units, while the ratio
a2/L2 is extrapolated to zero with the expected
linear behavior. The lower plot shows agreement
in the continuum limit with the perturbative step
function (related to the �-function) at weak cou-
pling.

Since the gradient flow probes the gauge field
on the scale
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defined as a function of L in finite volume V = L4

while holding c = (8t)1/2/L fixed:

�c(L) =
4⇤
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⇤t2E(t)⌅
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.

This volume dependent coupling includes the
normalization factor ⇥(c) to match any defini-
tion of the renormalized coupling on the 1-loop
level [99]. It is not dependent on the coupling
and given by
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where ⌅3 is the third Jacobi function. In tests
with four massless fermions in the fundamental
representation of the SU(3) color gauge group,
c = 0.3 was chosen probing the renormalized cou-
pling on the scale µ = 1/3L.

The fact that the volume is finite necessi-
tates the separation of the gauge Fourier modes
into zero and non-zero modes. The non-zero
modes can be treated in 1-loop perturbation the-
ory while the non-trivially interacting zero modes
need to be treated exactly. The result at leading
order contains both algebraically and exponen-
tially suppressed finite volume correction terms
relative to the infinite volume result.

Although the method passed all the necessary
tests in the simple gauge model with four fun-
damental flavors, interesting BSM applications
have to come as part of new objectives in Kuti’s proposed research.
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continuum step function with scale factor s = 1.5
and stepping from the targeted renormalized cou-
pling g2 = 1.9 in the continuum. The physical
size L is held fixed in some units, while the ratio
a2/L2 is extrapolated to zero with the expected
linear behavior. The lower plot shows agreement
in the continuum limit with the perturbative step
function (related to the �-function) at weak cou-
pling.

Since the gradient flow probes the gauge field
on the scale

⇧
8t, a new running coupling can be

defined as a function of L in finite volume V = L4

while holding c = (8t)1/2/L fixed:

�c(L) =
4⇤

3

⇤t2E(t)⌅
1 + ⇥(c)

.

This volume dependent coupling includes the
normalization factor ⇥(c) to match any defini-
tion of the renormalized coupling on the 1-loop
level [99]. It is not dependent on the coupling
and given by

⇥(c) = ⌅4
3(e

�1/c2)� 1� c4⇤2

3
,

where ⌅3 is the third Jacobi function. In tests
with four massless fermions in the fundamental
representation of the SU(3) color gauge group,
c = 0.3 was chosen probing the renormalized cou-
pling on the scale µ = 1/3L.

The fact that the volume is finite necessi-
tates the separation of the gauge Fourier modes
into zero and non-zero modes. The non-zero
modes can be treated in 1-loop perturbation the-
ory while the non-trivially interacting zero modes
need to be treated exactly. The result at leading
order contains both algebraically and exponen-
tially suppressed finite volume correction terms
relative to the infinite volume result.

Although the method passed all the necessary
tests in the simple gauge model with four fun-
damental flavors, interesting BSM applications
have to come as part of new objectives in Kuti’s proposed research.
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continuum step function with scale factor s = 1.5
and stepping from the targeted renormalized cou-
pling g2 = 1.9 in the continuum. The physical
size L is held fixed in some units, while the ratio
a2/L2 is extrapolated to zero with the expected
linear behavior. The lower plot shows agreement
in the continuum limit with the perturbative step
function (related to the �-function) at weak cou-
pling.

Since the gradient flow probes the gauge field
on the scale

⇧
8t, a new running coupling can be

defined as a function of L in finite volume V = L4

while holding c = (8t)1/2/L fixed:

�c(L) =
4⇤

3

⇤t2E(t)⌅
1 + ⇥(c)

.

This volume dependent coupling includes the
normalization factor ⇥(c) to match any defini-
tion of the renormalized coupling on the 1-loop
level [99]. It is not dependent on the coupling
and given by

⇥(c) = ⌅4
3(e

�1/c2)� 1� c4⇤2
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,

where ⌅3 is the third Jacobi function. In tests
with four massless fermions in the fundamental
representation of the SU(3) color gauge group,
c = 0.3 was chosen probing the renormalized cou-
pling on the scale µ = 1/3L.

The fact that the volume is finite necessi-
tates the separation of the gauge Fourier modes
into zero and non-zero modes. The non-zero
modes can be treated in 1-loop perturbation the-
ory while the non-trivially interacting zero modes
need to be treated exactly. The result at leading
order contains both algebraically and exponen-
tially suppressed finite volume correction terms
relative to the infinite volume result.

Although the method passed all the necessary
tests in the simple gauge model with four fun-
damental flavors, interesting BSM applications
have to come as part of new objectives in Kuti’s proposed research.

 3rd Jacobi function

Yang–Mills gradient flow M. Lüscher

Figure 1: Local fields Ot(x) constructed at flow time t > 0 depend on the fundamental field variables in a
region of space-time approximately 2

√
8t wide (red area). Further away from the point x, the sensitivity to

the basic fields decreases like a Gaussian and very rapidly becomes totally negligible.

The smoothing property of the gradient flow and the associated quark flow implies that correla-
tion functions of fields at non-zero flow times have no short-distance singularities. Renormalization
is nevertheless required, but turns out to be extremely simple. Explicitly, if Ot(x) is a bare, gauge-
invariant composite field at flow time t > 0 of degree n and n̄ in the quark and antiquark fields, the
renormalized field is given by

OR,t = (Zχ)
1
2 (n+n̄)Ot , (2.9)

where the renormalization constant Zχ is independent of t. In particular, the field (2.7) does not
require renormalization and the chiral densities (2.8) renormalize with the same factor Zχ .

The proof of these statements [2, 3] is based on an exact representation of the correlation
functions through a local field theory in 4+1 dimensions, the extra dimension being the flow time.
Zinn–Justin and Zwanziger [8] introduced the representation many years ago in their work on the
renormalization of the Langevin equation. In the pure gauge theory, the latter actually coincides
with the flow equation (2.1) except for the fact that it includes a noise term, which complicates the
situation and requires a renormalization of the Langevin time, for example.

3. Chiral condensate

In lattice QCD, the expectation value of the scalar density ūu+ d̄d of the up and down quarks
diverges like the second or third inverse power of the lattice spacing when the continuum limit is
taken. The divergent terms are proportional to the light-quark masses if the lattice theory preserves
chiral symmetry, but also in these cases their subtraction tends to give rise to important significance
losses or even some conceptual issues. Using the gradient flow, this problem can now be elegantly
bypassed [3].

3.1 Flow-time dependent condensate

Since the flow equations are chirally invariant, the quark field at non-zero flow times, χ(t,x),
transforms in the same way as the fundamental field ψ(x) under global chiral rotations. In particu-
lar, the light-quark chiral densities

Srst ±Prst , r,s ∈ {u,d}, (3.1)

4

The renormalized gauge coupling 𝞪(t) is 
defined at gradient flow time t of the gauge field

• Earlier a conformal infrared fixed point (IRFP) was reported in [1] at renormalized gauge 
coupling g2 ~ 6.2 of the important  SU(3) gauge theory with twelve massless fermions. 

• In disagreement,  no IRFP was seen in [2] around the g2 ~ 6.2 location. 

• In recent work [3] the IRFP of [1] was revived and moved by the authors to a new location 
in the g2 ~ 7 region.

• In our new work reported here no IRFP is found in the g2 ~ 7 region of the gauge coupling, 
in disagreement with the new results in [3]. Based on this controversy around the non-
existence of the the IRFP,  the (near)conformal behavior of this gauge theory remains 
undecided and important to resolve.

computational strategy:

most important tuned new results:
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Two key ingredients in our work overcome the most important 
limitations on the results reported in [3]. They were also applied 
to our recent work in [2] which was a response to the reported 
IRFP in [1]:

(1) Targeting selected values of the renormalized gauge coupling, 
interpolation at fixed lattice volumes is replaced by precise 
tuning of the lattice coupling g0

(2) Very large volumes have been deployed 
     which was necessary to obtain decisive  
     results on the (non)existence of the 
     reported IRFP in [3].
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10 data points fitted and 6 data points (red) predicted

The continuum step β-function is calculated at three targeted values of the 
renormalized gauge coupling g2(L) where the linear size L of the finite volume is 
in arbitrary scale units. The physical size of the volume monotonically grows 
with increasing g2(L).

The three red points are new results for targets D, E, F.  The three magenta 
points are targets A, B, C from [2] in disagreement with the earlier location of 
the IRFP in [1].  All 6 points of the step β-function were determined from  
precisely tuned and targeted renormalized gauge couplings g2(L)  eliminating 
systematic errors from interpolation. 

The relocated IRFP from [3] is shown with statistical error band (magenta) and 
what is described in [3] as systematic error band (cyan). 

The existence of the recently relocated IRFP from [3] is inconsistent with our 
new results. The statistical evidence represented by the error bars of the 
independent data points is overwhelming.  The error on target E is from the 5-
point fit. With unlikely effect on the conclusions, no additional systematics is 
provided.
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Lüscher (earlier work by Neuberger)

the improved Symanzik gauge action is used in the 
gauge field gradient flow equations with clover 
improved energy operator E(t) at flow time t (SSC)

(1) Interpolation at fixed lattice volumes has been replaced by precise 
tuning of the lattice coupling g0 at strategically targeted values of the 
renormalized gauge coupling in [2] and in the new work here.  
Fifteen renormalized gauge couplings were tuned at three targets D, 
E, F added to the previous targets A, B, C in [2] and extending the 
investigated range to g2 ~ 7 where the new IRFP is reported in [3].  
For two points interpolation was added after tuning for increased 
precision.

(2) Very large volumes have been deployed which was necessary to 
     obtain definitive results around the location of the reported
     IRFP in [3].  The step β-function was probed for L16→L32,   
     L18→L36,  L20→L40, L24→L48, L28→L56   with tuned g2  at the
     lower L of each pair.

IRFP relocated
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 Target F  SSC   s = 2   c=0.25  from tuned data set 

 (g2(sL) - g2(L))/log(s2) = c0 + c1  a2/L2

c0=  0.200  0.037
c1=  -78.6  18

2/dof= 0.41

c=0.25   Target g2 = 6.9424 (F)
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 s = 2   c=0.20 interpolated tuning of data set 

 (g2(sL) - g2(L))/log(s2) = c0 + c1  a2/L2

c0=  0.1217  0.00986
c1=  -66.9  4.7

2/dof= 0.04

c=0.20    g2(target) :6.7956  

the consistency of tuned and interpolated results is shown at c=0.25 :

We also investigated the interpolation based step beta functions at c=0.2 and 
c=0.25 for direct comparison with interpolated results in [3]. The high quality of 
our polynomial interpolations had excellent 𝝌2 values in all volumes as the 
representative samples demonstrate where red points are predicted and blue/
black are combined data from [2] and the new tuned runs:

tuned results compared with interpolations:


