
Acknowledgment

U.Alekseeva, G.Michalicek and D. Wortmann

Performance Evolution
of the FLEUR Code 

Abstract

Peter Grünberg Institut and Institute for Advanced Simulation, 
Forschungszentrum Jülich and JARA, 52425 Jülich, Germany

Modernization of the Code

Unique Set of Features

Improved FLEUR experience

Future Plans, Challenges

Algorithms for FLAPW

Performance gains achieved
The advances in performance optimisation of the all-electron 
DFT code FLEUR achieved during the MaX project are 
presented. The improved implementation features
increased modularity of the code, reduced I/O, hybrid 
MPI/OpenMP parallelisation, additional interfaces to external 
libraries providing performance portability and provides
a significantly improved users experience. Due to the 
performance boost of the MaX version of the FLEUR code 
simulations with unit cells of more than 1000 atoms are
now feasible.

• Intensive support and discussions with HPC groups at JSC 
(Jülich Forschungszentrum) and IT Center 
(RWTH Aachen University)

• Identification of computational most relevant code segments

256 atoms CuAg on CLAIX, scales up to 16 nodes (384 cores)

• Implementation of multi-level hybrid parallelism enabling the 
efficient use of multi-core and multi-node machines using MPI 
and OpenMP

• Interfacing of various high-performance libraries for matrix 
diagonalization (ELPA, ScaLAPACK, Magma, Elemental)

• Implementation of new algorithms suited for current and 
future computing architectures

• Removal of show-stoppers like excessive IO
• Code version to use CUDA programming

for running on GPUs

Code part CPU time 
(24 core)

Speedup on
384 cores

Parallel
efficiency

Setup,Potential 5% 3.1 20%

Matrix setup 45% 10 63%

Diagonalization 40% 9.0 56%

Charge density 8% 5.3 33%

Mixing 1% 2.2 14%

Total SCF run 100% 7.8 49%

 Code Parts Level of Parallelization

MPI OpenMP SIMD

Potential - a lot of small subroutines
- parallelization of loops

- loops - compiler flags
- BLAS calls

                                        k – points                Eigenvalue

Matrix Setup - independent 
eigenvalue 
problems for each
k-point

- block distribution 
among the 
processes

- BLAS calls
- compiler hints
- compiler flags

Diagonalization - interfaces to the external libraries:
   ELPA, ScaLAPACK, Elemental

New Charge - loop over reciprocal 
  lattice vector g⃗

- loop over 
atoms

- compiler flags

Mixing - to be done
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Number of MPI processes

DyTiO3 (20 atoms)

1 k-point per MPI process
2 k-point per MPI process
4 k-point per MPI process

4 16 64 256
MPI processes
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Number of nodes, 24 cores each

TiO2 (1078 atoms)

Total
HS setup, 56.5%

Diagonalization, 38.9%
New charge generation, 3.9%

Ideal
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Number of nodes, 64 cores each

CuAg (256 atoms)

Total
Potential generation, 6.3%

HS setup, 50.5%
Diagonalization, 32.7%

New charge generation, 8.9%

This work has been supported by the EU through the H2020-
EINFRA-2015-1 project: GA 676598 and by a JARA-HPC seed-
fund project.

• Further porting to accelerators
• Further tuning of the KNL performance
• Redesign of matrix layout to enable easier implementation of 

new algorithms and easier tuning to new architectures

Typical challenges for FLEUR users:

• All-electron method requires many parameters and has a 
complex input

• Input/Output difficult to understand and to modify
• Availability of documentation 

Exemplary actions implemented:

• XML input/output
• More documentation 

on webpages/wiki

Code refactoring and developers tools:

• New version with increased degree of modularization
• Removing of IO and implementing of structured parallel IO 

schemes where needed
• Automatic building and testing of executables in a continuous 

integration framework
• Introduction of modern Fortran programming feature

• Code available for collaborative development on institutes 
GitLab server:

• Tutorials and hands-on 
sessions

https://iffgit.fz-juelich.de/fleur/fleur

At PGI-1/IAS-1 we develop and use
the  advanced DFT-code FLEUR:

• Highly accurate FLAPW method
• All electron, full-potential DFT
• Bulk systems, surfaces, molecules
• Complex magnetism, including

non-collinear magnetism, 
calculation of model parameters for localized spin models

• Relativistic effects, spin-orbit coupling
• Applied external electric fields
• Standard DFT exchange and correlation functionals as well 

as LDA/GGA+U, hybrid functionals, vdW functionals
• Interfaces to external codes like Wannier90, SPEX, GFLEUR
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Number of nodes, 24 cores each

CuAg (256 atoms)

Version 0.26
Version 0.27, MPI

Version 0.27, Hybrid
Ideal slope

A standard FLEUR run performs the following main tasks:
1. The calculation of the potentials from the charge density

• Coulomb potential as solution of Poisson equation
• Exchange-correlation potential

2. The setup of the Hamiltonian and overlap matrices
• Interstitial contribution in plane-waves
• Sphere contributions in local basis
• Matching of local basis to plane-waves

3. The diagonalization of the matrix
• Call to optimized math-libraries

4. Calculation of new density
• Sphere and interstitial density
• Mixing of in- and output density

FLAPW-basis set defined in two different regions in space:
• Plane-waves 
• Numerical (atom-like) 

functions in MT-sphere 
around each atom

• Matching across sphere boundary (A-coefficients)

Sphere contribution to Hamiltonian:

Product of three matrices                *        *
(Aspect ratio: N>>L)

Optimized Algorithm:
• Separation into spherical and non-spherical contribution

Spherical contribution: 
• m,m’-sum can be performed analytically
• remaining single l-sum is fast 

Non-spherical contribution: 
• l,m sums can be restricted to smaller maximal L’

• Local Hamiltonian can be Cholesky-decomposed

• Final operation is a rank-k update (zherk)
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                  Nodes256 atoms, basis 24k, 2816 el. (CuAg)

512 atoms, basis 60K, 7168 el. (GaAs)
1078 atoms, basis 105K, 8628 el. (TiO2)
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@ CLAIX
Intel 

Broadwell
15 min on 

1 node

@ CLAIX
Intel 

Broadwell
87 min on 
16 nodes

K-point MPI parallelization 
• Independent eigenvalue 

problems
• Negligible communication
• Almost ideal scaling

Eigenvalue parallelization
• Reduces the memory usage 

per MPI process
• Elimination of I/O improved 

performance considerably
• As #nodes grow, hybrid parallel

scheme becomes more efficient

Comparison with old FLEUR version

Large systems
• Simulation of unit cells with >1000 atoms is now possible

Scaling for different systems/sizes

Accelerator Architectures

Intel KNL:
• Comparable performance to Broadwell
NVIDIA GPU (K80):
• Only single node due to missing diagonalization library

@ CLAIX
Intel KNL
17 min on 

1 node


