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FE2TI: Computational Scale Bridging for Dual-Phase Steels

Motivation

Advanced High Strength Steels (AHSS) provide a good combination
of both strength and formability and are therefore applied exten-
sively in the automotive industry, especially in the crash relevant
parts of the vehicle. Dual-phase (DP) steel is an example for such
AHSS which is widely employed. The excellent macroscopic behavior
of this steel is a result of the inherent micro-heterogeneity and com-
plex interactions between the ferritic and martensitic phases in the
microstructure. Thus, considering the microscale is indispensable for
realistic simulations.

Radical Scale Bridging by FE>-Framework (FE2TI)

The FE2-method as illustrated for the Nakajima test below on the
right, cf. [1, 2], is a direct multiscale method and provides a suitable
numerical tool for radical scale bridging. We present our success-
full FE? implementation FE2T| developed in the EXASTEEL project
(SPPEXA), which we have scaled to 458 752 cores and 1.8 x 10° MPI
ranks of JUQUEEN [3] and to the complete Mira (786K cores) at
Argonne National Laboratory [4] for hyperelasticity problems already
in 2015. Inexact or exact FETI-DP methods are used to solve the 3D
microscopic boundary value problems.
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Scalability for a Realistic Setup Using a Parallel Macro Solver

If the macroscopic problem is large, a parallelization is necessary. We
recently included the option to use CG with a BoomerAMG precondi-
tioner [5] on the macroscale instead of using sparse direct solvers. Us-
ing 917,504 MPI ranks on the complete JUQUEEN for a FE2TI
production simulation (unstructured RVEs, an J2-elasto-plasticity
material model, several load steps, a large macroscopic deformation
problem with 14K degrees of freedom), the time to solution can be
reduced by a factor of 1.3. We also include a scaling graph for a
similar realistic setup.

Unstructured Grids in FE2TI

Recently, we investigated the influence of the resolution of the
microstructure on the macroscopic solution; see [6].
we compared the macroscopic stresses for unstructured and struc-
tured meshes on the RVEs and used a J2-elasto-plasticity material
model with realistic parameters fitted to dual-phase steels; see [7].

Therefore,

(A) unstructured; 103K dofs (B) structured; 945K dofs (C) unstructured; 921K dofs

Using (C) as reference RVE, (A) approximates the stresses on the

macroscale much better than (B), despite (A) 10 times smaller.
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Production Run with Elasto-Plasticity on JUQUEEN

Based on the results from [6], we performed a long FE2TI production
run using an unstructured mesh for the RVEs and a macroscopic
geometry which is similar to the Nakajima geometry.
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Nakajima Test

An illustration of the FE? scale bridging method for the Nakajima
test; averaging of Kirchhoff stresses P on the microscale.
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