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Quantum Chromodynamics (QCD) is a quantum field theory for the strong interaction of the quarks via gluons and as such part of the standard model of
elementary particle physics. Deducing predictions mostly requires a discretization onto a lattice. At the heart of Lattice QCD lies the Dirac Operator D and
its Hermitian version Q. Here, eigenvalues of Q are needed to improve the signal-to-noise ratio when computing pion and eta-meson correlators.
In this work, we present a Davidson type eigensolver for Q which uses our successful DD-αAMG multigrid method as a preconditioner. Within this framework,
we incorporated several modifications specifically designed for Q and the multigrid method. We employed a strategy which introduces a powerful synergy
between the preconditioner and the Davidson method. Numerical results show the impact of these modifications and compare with common and state-of-the-art
eigensolvers, i.e. PARPACK and PRIMME. This approach can also be used to formulate a new, promising multigrid setup proceduce.

∗Bergische Universität Wuppertal

Motivation
Hadronic Observables in Lattice QCD
• (Wilson) Dirac Operator D is defined by

(DWψ)(x) = (m0+4)ψ(x)−1
2

3∑
µ=0

(I−γµ)Uµ(x)ψ(x+µ̂)−(I+γµ)UH
µ (x−µ̂)ψ(x−µ̂)

• Eta-meson correlator with nf = 2 flavors and two-point function

Cη(x, y) = 〈Oη
xŌ

η
y〉 ∝ tr

(
γ5D

−1
x,yγ5D

−1
y,x

)︸ ︷︷ ︸
trace of 12× 12 matrix

−nf tr
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tr
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y,y

)︸ ︷︷ ︸
full matrix, infeasible to compute!

→ Use Monte Carlo simulation to estimate trace via vHQ−1v, v ∈ Z2 + iZ2, Q = Γ5D

⊕ Converges almost surely (with probability 1)
⊕ Only needs one inversion + inner product → cheap iterations
	 Error decreases with O(1/

√
Nstoch) → many iterations needed

• Noise reduction technique→ low-mode averaging
– Split Operator Q−1 = Q−1

low + Q−1
high

– Q−1
low =

∑k
i=1

1
λi
viv

H
i smallest eigenpairs

– Treat Q−1
high with Monte Carlo

• Eta correlator dominated by low modes
 Few estimates for Q−1

high are sufficient
• Computation of small eigenpairs dominates
overall cost
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The Basic Ingredients
(Generalized) Davidson Framework
• Two-phase algorithm

– Subspace extraction
– Subspace expansion

• Broad spectrum of customization
• Supports preconditioning (line 13)

1 Input : i n i t i a l gue s s t = v0 , a c cu r acy ε
2 Output : e i g e n p a i r (λ, x)
3 for m = 1, 2, . . .
4 t = (I − V V H)t
5 vm = t/||t||2
6 V = [V |vm]
7 H = V HQV
8 get t a r g e t e i g e n p a i r (θ, s) o f H
9 u = V s

10 r = Qu− θu
11 i f ||r||2 ≤ ε
12 λ = θ , x = u f i n i s h e d
13 t = Mm(r)• Connection to other eigensolvers:

– Solve (I − uuH)(Q− θI)(I − uuH)t = −r → Jacobi -Davidson method
– Choosing t = r produces same subspace as Arnoldi’s method

Domain Decomposition Adaptive Algebraic Multigrid: DD-αAMG
• Initial setup procedure generates interpolation/restriction operators
• Error gets smoothed → Gauss-Seidel, SAP, GMRES
• Represent smooth error on coarse grid
• Coarse grid treats part of spectrum not efficiently reduced by smoother
→ Can be approximated by small eigenvalues
• Solve coarse system and update error
⊕ Insensitive to condition number
⊕ DD-αAMG orders of magnitude faster than Krylov methods
	 Can not treat larger shifts efficiently

Subspace Extraction Phase
Finding Interior Eigenvalues
Rayleigh-Ritz extraction
Construct H = V HQV → standard
eigenvalue problem
⊕ Computationally cheap
	 Approximates exterior eigenvalues

first ↔ interior needed!

vs.

Harmonic Ritz extraction
Solve (QV )H(QV )si = θi(QV )HV si
→ general eigenvalue problem
	 2x IPs, GEP more expensive
⊕ Mimics EVs of Q−1 ↔ finds interior

EVs

→ Harmonic Ritz reduces iterations by up to a factor 3 and time by 2

Locally Minimal Residuals[1]

• Extremal Ritz pairs = extremal eigenpairs
• Either Ritz value or Ritz vector might be off
(or both)
• Here: Trust vector and recompute value via
Rayleigh quotient

→ Saves up to 20% outer iterations
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[1] G. Sleijpen, H. van der Vorst, E. Meijerink, Efficient expansion of subspaces in the Jacobi-Davidson method for standard and generalized eigenproblems, Electronic
Transactions on Numerical Analysis, 7:75-89, 1998

Subspace Expansion Phase
Efficient Evaluation of Preconditionier
• Use Jacobi-Davidson for more robust expansion

– Avoids stagnation if correction equation is solved exactly
– Enables controlling of inner iterations → Hochstenbach, Notay[2]

• Modified DD-αAMG[3] solver for inverting shifted
systems with Q
– SAP replaced by GMRES as smoother
– Γ5-preconditioning:

(I − uuH)(D − θΓ5)(I − uuH)t = −Γ5r

correction iterations Time
equation outer inner core-h.
no Γ5-prec 565 10,349 83.0
with Γ5-prec 511 3,045 41.3

Handling Many Eigenvalues
• Explicit locking → keep converged eigenvectors in basis V
⊕ Robust & easy to implement
	 Size of V (and H) scales with no. of eigenvalues → worse eigenvalue scaling

• Thick restarting scheme
– V HQV = H = S−1ΘS eigenvalue decomposition
– Keep smallest nconv + mmin Ritz values of Θ and according vectors in S
– Recompute basis V ← V S, H ← SHHS

[2] M. Hochstenbach, Y. Notay, Controlling inner iterations in the Jacobi-Davidson method, SIAM J. Matrix Anal. Appl., 31(2):460-477, 2009
[3] A. Frommer, K. Kahl, S. Krieg, B. Leder, M. Rottmann, Adaptive aggregation based domain decomposition multigrid for the lattice Wilson Dirac operator, SIAM J.

Sci. Comp., 36:A1581-A1608, 2014

Optimizing Solver Performance
• Shifted solves needed, once enough eigenvalues are found
	 Loss of local coherence if shift is too large

→ Coarse grid correction ineffective
→ Do not start shifting right away

• Update interpolation dynamically throughout eigenvalue
computation

1. Check sign of current Ritz value θ
2. Replace interpolation vectors by nearest eigenvectors

to θ and rebuild coarse grid operator
 One-sided deflation

• Interpolation updating improves eigenvectors scaling sig-
nificantly
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Comparison With Other Solvers
• PARPACK with (near optimal) Chebychev filter on Q2

	 Squaring of condition number
– Lacks in lattice scaling
– PARPACK with Q−1 also not competitive
→ Not considered in further tests
• PRIMME with mostly default parameters + Γ5-preconditioning

– Based on same framework  similar results expected
– Implements state-of-the-art methods and techniques
– Uses Rayleigh-Ritz extraction
→ Slightly better eigenvalue scaling
→ Benefits greatly from Γ5-preconditioning
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Future Work
(1) Algorithmic improvements

– Implicit locking: Keep V ⊥ X
– Multilevel Solver → lattice scaling

(2) Estimation for needed eigenvalues

(3) Use method as multigrid setup
– First results show reduction of solver
iterations by more than 50%

– Tradeoff: Setup vs. Solve time
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