A multigrid accelerated eigensolver for the Hermitian Dirac Operator
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Quantum Chromodynamics (QCD) is a quantum field theory for the strong interaction of the quarks via gluons and as such part of the standard model of
elementary particle physics. Deducing predictions mostly requires a discretization onto a lattice. At the heart of Lattice QCD lies the Dirac Operator D and
its Hermitian version (). Here, eigenvalues of () are needed to improve the signal-to-noise ratio when computing pion and eta-meson correlators.

In this work, we present a Davidson type eigensolver for () which uses our successful DD-aAMG multigrid method as a preconditioner. Within this framework,
we incorporated several modifications specifically designed for () and the multigrid method. We employed a strategy which introduces a powerful synergy
between the preconditioner and the Davidson method. Numerical results show the impact of these modifications and compare with common and state-of-the-art
eigensolvers, i.e. PARPACK and PRIMME. This approach can also be used to formulate a new, promising multigrid setup proceduce.
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Motivation
Hadronic Observables in Lattice QCD

e (Wilson) Dirac Operator D is defined by
3
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e Eta-meson correlator with n s = 2 flavors and two-point function
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trace of 12 X 12 matrix full matrix, infeasible to compute!

— Use Monte Carlo simulation to estimate trace via v'Q v, v € Zy + iZy, Q = T'sD

Converges almost surely (with probability 1)
Only needs one inversion + inner product — cheap iterations
& Error decreases with O(1/v/Ngen,) — many iterations needed

e Noise reduction technique — low-mode averaging

: _ _ _ Spectrum of
— Split Operator Q! = QZO%U + Qh;qh P 5
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- Q! = S )\%U,;UZH smallest eigenpairs .
— Treat Qf:zzh with Monte Carlo 3 i ]
e Eta correlator dominated by low modes % g _
~~ Few estimates for Qi;.lgh are sufficient o4t l
e Computation of small eigenpairs dominates 1536
overall cost index i

The Basic Ingredients

1 Input: initial guess t=wvy, accuracy ¢
(Generalized) Davidson Framework 2 Output: ecigenpair (\z)
3 for m=12,...
) : 4 t=(1—-VVH)
e Two-phase algorithm : . z[t/‘HtHf
_ - 6 V =1Viu,
Subspace extraction ; H oy
— Subspace expansion : get target eigenpair (0,s) of H
. . 9 u=1Vs
e Broad spectrum of customization 1 r = Qu— u
Ce : 11 if ||rll <e
e Supports preconditioning (line 13) 1, Ne@. z=u finished
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e Connection to other eigensolvers:

— Solve (I — uu!)(Q — 01)(I — uu)t = —r — Jacobi-Davidson method
— Choosing t = r produces same subspace as Arnoldi's method

Domain Decomposition Adaptive Algebraic Multigrid: DD-acAMG
e Initial setup procedure generates interpolation/restriction operators

e Error gets smoothed — Gauss-Seidel, SAP, GMRES

e Represent smooth error on coarse grid

— Can be approximated by small eigenvalues
e Solve coarse system and update error

Insensitive to condition number

DD-aAMG orders of magnitude faster than Krylov methods
& Can not treat larger shifts efficiently

7SN
VSN
SN

N

QS JAN
N I
Z7ESSONR

e Coarse grid treats part of spectrum not efficiently reduced by smoother

Subspace Extraction Phase
Finding Interior Eigenvalues

Harmonic Ritz extraction

SO|V€ (QV)H(QV)SZ — QZ(QV)HVSZ

— general eigenvalue problem

Rayleigh-Ritz extraction
Construct H = VHYQV — standard

eigenvalue problem Vs

Computationally cheap © 2x IPs, GEP more expensive
© Approximates exterior eigenvalues

first <> interior needed!

EVs
— Harmonic Ritz reduces iterations by up to a factor 3 and time by 2

Computing 100 eigenvalues

Locally Minimal Residuals!!

Rayleight-Ritz (core-h
Harmonic Ritz (core-h

Rayleight-Ritz (iterations
103 E Harmonic Ritz (iterations

e Extremal Ritz pairs <» extremal eigenpairs

e Either Ritz value or Ritz vector might be off
(or both)
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e Here: Trust vector and recompute value via
Rayleigh quotient
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64 x 32364 x 403 64 x 643

lattice size N; x N3

48 x 243

— Saves up to 20% outer iterations

Mimics EVs of Q! < finds interior
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Subspace Expansion Phase
Efficient Evaluation of Preconditionier

e Use Jacobi-Davidson for more robust expansion

— Avoids stagnation if correction equation is solved exactly
— Enables controlling of inner iterations — Hochstenbach, Notaym

e Modified DD-ccAMGL?! solver for inverting shifted

" correction iterations Time
systems with () equation | outer inner core-h.
— SAP replaced by GMRES as smoother no ['s-prec 1565 10,349 83.0
— |'s-preconditioning: with I's-prec 511 3,045 41.3

(I — uu)(D — 0T5)(1 — uut)t = —Ts5r
Handling Many Eigenvalues

e Explicit locking — keep converged eigenvectors in basis V'

Robust & easy to implement
& Size of V' (and H) scales with no. of eigenvalues — worse eigenvalue scaling

e [hick restarting scheme

- VHEQV = H = S~'OS eigenvalue decomposition
— Keep smallest 1.0y + Minin Ritz values of © and according vectors in S

— Recompute basis V < VS, H + SHHS
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Optimizing Solver Performance

. . 48 x 243, 100 EV
e Shifted solves needed, once enough eigenvalues are found 60 P —— 800
. et — |
& Loss of local coherence if shift is too large ' | 700
50
1 650 4
— Coarse grid correction ineffective S 15 | 6002
o . N 1 550 2
— Do not start shifting right away 40
41 500
35
. . . . 1 450
e Update interpolation dynamically throughout eigenvalue ol _ o
com pUtat|On start shifts after n iterations
48 x 243, 100 EV
1. Check sign of current Ritz value 6 100 5 e i corech) o
90 | DD-aAMG iterations 000
2. Replace interpolation vectors by nearest eigenvectors w0l
to 0 and rebuild coarse grid operator - 0] [
: : S 6ol { 5000 &
~+ One-sided deflation v £
50 1 4000
e Interpolation updating improves eigenvectors scaling sig- or | 3000
n|f|Cant|y ! 2|4 3|6 4|8 no uIIJdate
start update after n conv'd vectors
A
Ritz value

interpolation

PARPACK
PRIMME + AMG ——
GD-AAMG

Comparison With Other Solvers
e PARPACK with (near optimal) Chebychev filter on Q*

& Squaring of condition number
— Lacks in lattice scaling

— PARPACK with Q! also not competitive w
— Not considered in further tests
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o PRIMME with mostly default parameters + I's-preconditioning | """l
— Based on same framework ~~ similar results expected o
— Implements state-of-the-art methods and techniques Y o "
— Uses Rayleigh-Ritz extraction R | 1000 %
— Slightly better eigenvalue scaling | e
— Benefits greatly from I';5-preconditioning e
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Future Work

(1) Algorithmic improvements

— Implicit locking: Keep V' L X

— Multilevel Solver — lattice scaling
(2) Estimation for needed eigenvalues
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(3) Use method as multigrid setup

— First results show reduction of solver

iterations by more than 50%
— Tradeoff: Setup vs. Solve time
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