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Gate-based quantum computingA quantum computer contains a set of two-level systems called qubits. Each qubit can be in a complex superposition of the computational states j0i and j1i. At each step in the computation, gates transform the qubits. Examples for single-qubit gates:

The computation can be expressed as a quantum circuit:
At the end, a measurement of the qubits produces a bit string by projecting each qubit to j0i or j1i.

Transmon qubit architectureThe architecture of the transmon quantum computer is defined by the system Hamiltonian

Gate-error metricsProjection of the time-evolution operator U(t) on the qubit subspace gives the matrix M. Ideally, this matrix should be equal to the unitary quantum gate U.
Average gate fidelity [4]
Diamond error rate [5]
Unitarity [6]

Conclusion: The gate metrics of the optimized pulses are nearly perfect and agree with experimental achievements [3]. However, in repeated applications or actual quantum circuits, the gates suffer from systematic errors. These can be observed in experiments [7,8]. Although the gate fidelity and other metrics indicate them, they cannot replace the information of how well and how often a certain gate may be used in a quantum computation [9].

Simulation methodThe CNOT gate is implemented in three different versions based on cross-resonance (CR) pulses [3].

The qubits are given by the lowest eigenstates of Cooper Pair Boxes (CPBs) in the transmon regime [1]:
One way of coupling transmons is based on a trans-mission line resonator, modeled as a harmonic oscillator:
Another way of coupling transmons is based on a capacitive electrostatic interaction:
Quantum gates are implemented by microwave voltage pulses:

The two-qubit controlled-NOT (CNOT) gate is a conditional operation to entangle two qubits. 
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The time-dependent Schrödinger equation (TDSE) 
is solved numerically using a Suzuki-Trotter product-formula algorithm [2] for the time-evolution operator:
The goal is to find a pulse n

gi
(t) so that U(t) implements a certain quantum gate on the qubits. We use the Nelder-Mead algorithm to optimize the parameters of the pulse.
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