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Gate-based quantum computing

A quantum computer contains a set of two-level systems called

qubits. Each qubit can be in a complex superposition of the
0) and

Transmon qubit architecture
The architecture of the transmon quantum computer is defined by the system Hamiltonian

H = Hcepp + Hpes + Hec

computational states 1). At each step in the

combitation. eates transform the aubits The qubits are given by the lowest eigenstates of Iransmon 1
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The computation can be expressed as a quantum circuit: 1S1<7 <Ny
0) 4 X, HHIe1H H Quantum gates are implemented
by microwave voltage pulses:
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At the end, a measurement of the qubits produces a bit string ; 9 1904 19992 5.190 - 0.07

by projecting each qubit to |0) or |1).

Gate-error metrics
Projection of the time-evolution operator U(t) on the qubit
subspace gives the matrix M. Ideally, this matrix should be
equal to the unitary quantum gate U.
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Simulation method

The time-dependent Schrodinger

equation (TDSE)

0
io V() = H(t) |¥())

is solved numerically using a Suzuki-

The CNOT gate is implemented in three different
versions based on cross-resonance (CR) pulses [3].
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The goal is to find a pulse n (t) so CR4 No = ; Hgac - g;il 1 H<>

that U(t) implements a certain
quantum gate on the qubits. We use

the Nelder-Mead algorithm to
optimize the parameters of the pulse.
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Conclusion: The gate metrics of the optimized pulses are nearly perfect and agree with experimental achievements [3]. However, in repeated applications or

actual quantum circuits, the gates suffer from systematic errors. These can be observed in experiments |7,8]. Although the gate fidelity and other metrics
indicate them, they cannot replace the information of how well and how often a certain gate may be used in a quantum computation |9].
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