

Coupled quadrupole-phonon excitations in CeAuAl₃ and spin wave excitations in MnWO₄

B.-Q. Liu^{1,2}, P. Čermák², A. Schneidewind², and Sohyun Park³

¹Key Laboratory of Neutron Physics, Institue of Nuclear Physics and Chemistry, CAEP, Mianyang, PR China ²Jülich Centre for Neutron Science (JCNS) at MLZ, Forschungszentrum Jülich GmbH, Garching, Germany

³ Section Crystallography, Department for Earth and Environmental Sciences, Ludwig-Maximilians-Universität München, Theresienstrasse 41, 80333 Munich, Germany

Structural properties and lattice dynamics of CeAuAl₃

Introduction and Motivation:

V Ce-based heavy fermion intermetallic compounds $CeTX_3$ (T: transition metal, X= Si, Ge, or Al)

V Weak magnetoelastic interaction can lead to the anticrossing phenomenon in inelastic neutron scattering experiments.

✓ Strong magnetoelastic interaction can lead to the formation of a bound state between phonons and crystal field (CEF) excitation, which can not be explained by a pure CEF model.

Computational method: DFT calculations have been carried out with the PAW method, GGA descriptions for the exchange-correlation functional. The cutoff energy is set as 500 eV in plane-wave basis expansion. The *k*-point meshes are sampled by $14 \times 14 \times 7$ according to the Monkhorst-Pack scheme.

The phonon calculations are performed with the finite difference method. A $2 \times 2 \times 2$ supercell was constructed and Phonopy was used. Phonon dispersion along Γ -Z- Σ - Γ is shown in FIG. 2. The irreducible representations for the high symmetry points are: Γ =4 Γ_1 + Γ_3 +5 Γ_5 , Z=4 Γ_1 + Γ_3 +5 Γ_5 , and Σ =9A'+6A'', respectively.

Table 1. Structural parameters for CeAuAl₃.

	a (Å)	<i>c</i> (Å)	c/a	V ₀ (ų)
Expt. at 300 mK ^[1]	4.3105	10.7965	2.5047	200.60
Expt. at 9 K ^[1]	4.3172	10.8090	2.5037	201.46

FIG. 2 Phonon dispersion for CeAuAl₃ along high symmetry lines Γ -Z- Σ - Γ .

FIG. 1 Crystal structure of CeAuAl₃, with Ce in yellow, Au in orange, Al in blue.

Expt. [2]	4.3364	10.85	2.5021	204.03
Our DFT study	4.3354	10.8436	2.5012	203.81

Summary: The magnetoelastic interaction which is not strong will lead to mixed-mode excitations of phonons **FIG. 3** D

and quadrupole excitations in CeAuAl₃.

Two spin-canting textures in the AF1 phase of multiferroic MnWO₄

Introduction and Motivation:

√ an exemplary prototype of magnetoelectric control, possible applications like data storage, magnetoelectric sensors

✓ a promising system for the study of magnetic phase transitions and related critical phenomena
 ✓ rich magnetic phase diagram by chemical substitutions and applying magnetic fields

✓ competing long-range exchange coupling

Computational method: Total energies of both collinear (Fig. 4a) and non-collinear (Fig. 4b) AF1 models have been calculated within the PAW method, GGA descriptions

FIG. 3 Dispersion curves of the coupled excitations in $CeAuAl_3$ [3].

for the exchange-correlation functional. The cutoff energy is 500eV in plane-wave basis expansion. A supercell with 216 atoms has been constructed, using only the Γ -point for *k*-point integrations.

FIG. 4 The magnetic model of the AF1 phase of $MnWO_4$, (a) collinear, taken from Ref.[4], (b) non-collinear, displaying only the magnetic Mn^{2+} ions.

0.0 + 0.1 0.2 0.3 0.4 0.5 [H, 0.5, 2H] (r.l.u.)

FIG. 5 The spin wave dispersion of the AF1 phase of MnWO₄, the red circles are experimental data taken from Ref.[5], fitted by the non-collinear model.

[1] D. T. Adroja, C. de la Fuente, A. Fraile, *et al.*, PRB **91**, 134425 (2015).
[2] C. Franz, A. Senyshyn, A. Regnat, *et al.*, J. Alloys & Comp. **688**, 978-986 (2016).
[3] P. Čermák, *et al.*, in preparation.

[3] F. Ye, R. S. Fishman, J. A. Fernandez-Baca, et al., PRB 83, 140401(R) (2011).

[4] Y. Xiao, C. M. N. Kumar, S. Nandi*, et al.*, PRB 93, 214428 (2016).

Summary: The energy of the two spin-canting structure is lower than that of the collinear model, i.e., the ground state of $MnWO_4$ prefers two spin-canting textures. Besides, the lowest spin wave branch can be properly described by the spin-canting model while the collinear model with one single-ion anisotropy parameter failed.

E-mail: <u>b.liu@fz-juelich.de</u> Phone: +49.89.289.54823

