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The planetary boundary layer Monin—Obukhov similarity theory (MOST) [ Limits of MOST

The PBL is the Atmospheric layer under immediate || esurface acts as boundary condition of the atmospheric domain o U perturbs neutral profile (requires |2/ Lo| <1)

impact by the surface (typically O(100m) thick); it

e turbulence closure inside domain requires extension to the surface to || ® YU from observations is ambiguous (site-/process-

couples free atmosphere to underneath land/ocean. specific issues as advection, imbalance, . .. )

provide gradients (fluxes) at the interface

= cross-component transter of energy, momentum, vapor e cquilibrated, homogeneous PBL required

e Monin—Obukhov Similarity theory exploits scale-similarity arguments

o vertically stratified in a non-dimensional framework and provides a flux—gradient closure | |= heterogeneity of boundary of turbulence violate clo-
e always turbulent, but even in the entire domain at the surface: sure paradigms
U 2 Z—z
e propagates information about the boundary condi- U(z) = "|log — + Uy & (for z00 < 2z < dppL) How ’large’ must a patch be to
. KL 200 Lo | ”
tions into the atmospheric compartment act as homogeneous for MOST"

o surface-layer closure (MOST) applied in most models

of atmospheric flow

e assessment of the theory requires independent ap-

proach

NOAA . .gov M. Van Dyke: An Album of Fluid Motion

Fluid Mechanics approach e Domain averages

e smooth, homogeneous surface e Convergence in time domain (— virtual towers)

e fixed boundary condition e Convergence in spatial domain (— coarse graining)

e o micro-physical processes and radiation 3 directions: streamwise, spanwise, 2D (horizontally)

Sketch of the Ekman layer that develops from the interaction between a flow ?

in geostrophic balance 20k x Gi = —Vp with the no-slip condition v = 0 at | | Ilustration of the data employed in the convergence study. Left: individual towers distributed on a
03072 % 6144 x 640 ~ 1.2 % 109 collocation points the boundary z = 0. Stable stratification is imposed by a negative surface | | regular grid subsampling the flow in space. Right: coarse-graining procedure for a two-dimensional

Numerics

e Gth-order compact spatial derivatives

S LS LS

e Oth-order collocated convective advection

e 4th-order low-storage Runge-Kutta time stepping

L L LS

e Compact pressure-Poisson solver to machine accuracy
e MPI/openMP parallelized up to 262,144 threads/4 racks

Simulations

buoyancy Byan = — Biet. horizontal convergence (1D along the streamwise and spanwise directions is not shown

~ 50, 000 iterations per case; ~ 20 x 10° CPUh

Convergence of individual samples to MOST in neutral conditions

e MOST systematically underestimates the variance of fluxes; applicability is scale-dependent

—MOST explains local variations for |¢, x|, = 0.1

avg v

—many models (LES/meso-scale) use Alt, z] below this range

e convergence depends on the direction along which the data is sampled

—anisotropy of near-surface streaks causes slower along-flow convergence

—variations are only governed by MOST when averaged along both horizontal directions
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= 3D structure of the turbulence impacts performance of similarity theory
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