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Introduction

Dynamics of coarse-grained (CG) models is greatly accel-
erated due to the removal of degrees of freedom and fric-
tion upon coarse-graining. Can this acceleration be pre-
dicted so that the dynamics can be corrected a priori?

In this work we apply excess entropy scaling relations to
polymer models at different levels of resolution and at-
tempt to quantify the accelerated dynamics in terms of
changes in the excess entropy.
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Slope of the MSD(t) curve as t→∞.

Entropy estimation

Excess entropy

Sexc = S − Sig

Total entropy

S = S0 + ∆bS + ∆nbS

Entropy change by thermodynamic integration (TI)
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Excess entropy scaling

Reduced center of mass self-diffusion coefficient according
to Rosenfeld [1]

D∗ = D
ρ
1/3
n√

kBT/nm
,

where ρn is the chain density, n is the chain length, and m
is the monomer mass. D∗ and Sexc are related with

D∗ = A exp(αSexc)

Iterative Boltzmann Inversion

Bottom-up approach to derive CG potentials by "fitting"
the radial distribution function (RDF) of a fine-grained
(FG) model.

Un+1 = Un + γ∆Un

∆Un = kBT ln
gn
gref

Computational details

• FG model: generic bead-spring polymer model with
length 24 monomers.

• Total of 32 state points (ρ, T ) in liquid phase.

• For each state point, bonded and non-bonded CG po-
tentials were derived at two resolutions

• NVT simulations with LAMMPS [3].

• CG potentials derived with VOTCA [2].

• Thermodyamic integration: 21 points (for each state
point at each resolution!) integrated with Simpson’s
rule.

Models

FG: bead-spring chains with harmonic bonds and Lennard-Jones interaction for non-bonded monomers.
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CG 2:1
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Self-Diffusion Coefficient
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Rosenfeld Scaling

R2
FG = 98.2% R2

CG2:1 = 94.6% R2
CG3:1 = 87.9%

-7

-6

-5

-4

-3

-2

-1

-1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2  0

ln
(D

* )
 (

re
du

ce
d 

un
its

)

Sexc / N (reduced units)

FG AA
CG 2:1
CG 3:1

linear fit
linear fit
linear fit

Comparing

R2
CG21-FG = 97.9% R2

CG31-FG = 98.1% R2
CG31-CG21 = 91.3%
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Conclusions and Outlook

• Rosenfeld’s excess entropy scaling relation [1] holds for coarse-grained resolutions.
• Excess entropy change due to coarse-graining can be linearly correlated to change in diffusion coefficient.
• Acceleration of the dynamics is proportional to the entropy loss→ Predictions?
• Next: apply this method to realistic polymer, e.g. polystyrene, and try to predict accelerations.
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