
Introduction
Cytoarchitectonic mapping of cortical areas is a key aspect in creating a multimodal brain atlas [1]. 
Currently used semi-automatic methods [2] to detect cortical boundaries are precise, but 
insufficient to handle the steadily increasing quantity of histological brain sections. This motivates 
the development of an automated approach.To this end, a Convolutional Neural Network (CNN) 
was trained [3], which can automatically segment 13 cortical areas across different brains. We try to 
improve the accuracy of the above CNN by focusing on just one specific area in a few, spatially 
close sections. Knowing that spatially close sections share a similar texture and geometric 
structure, we simplify the objective in this way and expect to achieve better results.

Cytoarchitectonic mapping
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Cytoarchitectonic areas are distinguished 
by variations of cell distributions in cortical 
laminae and with respect to columnar organization

Semi-automatic method based on [2]
• Based on statistical criteria, results in
  reliable border definition
• Time-consuming delineation of inner and
  outer contour of the cortical ribbons

Supporting workflow using CNN model

2μm

16 CH

16μm

32 CH

32μm

64 CH

64μm

64 CH

128μm

128 CH

128μm

128 CH

128μm

128 CH

64μm

64 CH

32μm

64 CH

conv 5x5, stride 4

conv 3x3

max pool 2x2

conv 3x3

conv 3x3

max pool 2x2

conv 3x3
conv 3x3

up-conv 2x2

conv 3x3

conv 3x3

in
p

u
t 

la
ye

r
16μm

32 CH

o
u

tp
u

t 
la

ye
r

copy activations

Convolutional Neural Network: U-Net [4]

• Learn to predict cortical areas based on cell-body stained images

Carefully preprocess training data to simplify objective

• Train on immediate surrounding of annotations

• Handle class imbalance by adjusting sampling probability based on 

  class frequency

Use spatially close sections for training

• Every 60th section manually annotated

• Spatially close sections share similar 

  texture and geometry

• Focus on one specific area (e.g. hOc1)

• Train on outer sections

• Predict on inner sections

Transfer-learning using pre-trained network [3]

• U-Net [4] like network, pre-trained

  on 4 brains, 13 cortical areas and

  111 sections

• Compensate low amount of

  training data by fine-tuning existing

  model
hOc1 hOc2 hOc3d hOc4d hOc3v hOc4v hOc4la hOc4lv

hOc5 FG1 FG2 FG3 FG4 cor wm bg

init
Automatically fill gaps

• Automatically create annotations

  for sections between training sections

• Reduce manual labor to annotating 

  two instead of 120 sections

Automatically annotated

train

predict

Training procedure
• Network input: grayscale images

  of cell-body stained

  histological brain sections

• Sample patches of 2025x2025

  pixels on 2µm spacing

• Purposeful overfitting by

  reducing variance of training

  examples Input Labels Output

Feature map visualization
Feature Maps

• Question: How does the model make decisions?

• Feature maps are outputs of internal layers

• Internal representations show what was learned

• Transform internal represenations to input image

• Use color coding to visualize presence of features

• Compare learned features to features used by

   human mappers

• Deeper layers learn more complex features

Interpretation

a) Detects large cells inside cortex

b) Detects image background

c) Visible cell density variations along cortex

d) High activation inside cortex

e) Stripes in primary visual cortex (hOc1)

f) South-West edges tissue to background

g) High activation for primary visual cortex

h) Activation for higher visual areas

a) initial 0.0 (FM 009) b) initial 0.0 (FM 004) c) initial 1.0 (FM 015) d) block 0.0 (FM 029)

e) block 1.1 (FM 035) g) block 3.1 (FM 104) h) block 2.0 (FM 042)f) block 3.1 (FM 055)

Deep Learning on HPC systems

G
P
U

G
P
U

G
P
U

G
P
U

CPU CPU CPU CPU CPU CPU

CPU CPU CPU CPU CPU CPU

CPU CPU CPU CPU CPU CPU

CPU CPU CPU CPU CPU CPU

Node 1

G
P
U

G
P
U

G
P
U

G
P
U

CPU CPU CPU CPU CPU CPU

CPU CPU CPU CPU CPU CPU

CPU CPU CPU CPU CPU CPU

CPU CPU CPU CPU CPU CPU

Node 2

G
P
U

G
P
U

G
P
U

G
P
U

CPU CPU CPU CPU CPU CPU

CPU CPU CPU CPU CPU CPU

CPU CPU CPU CPU CPU CPU

CPU CPU CPU CPU CPU CPU

Node 3
G

P
U

G
P
U

G
P
U

G
P
U

CPU CPU CPU CPU CPU CPU

CPU CPU CPU CPU CPU CPU

CPU CPU CPU CPU CPU CPU

CPU CPU CPU CPU CPU CPU

Node 4

MPI Allreduce

Data parallelism and synchronous training

• Replicate model on all compute nodes 

• Process different training samples on each node

• Calculate forward pass on each node

• Calculate gradients for backpropagation on each node

• Average gradients across nodes before weight update

• Use Pipelining for efficient communication

• Computing time granted on JURECA [5]

• Resources: 250.000 CPU + 50.000 GPU core-h

• GPUs are entirely dedicated to Deep Learning

• 4 NVidia Tesla K80 GPUs & 24 Intel Xeon cores per node

Requirements for Deep Learning

• GPUs for massively parallel tensor operations

• CPUs for data pre-processing and data augmentation

• I/O and memory for reading training data on demand 

• Network for inter-node communication during training
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Conclusion
Feature map visualization

• Feature map visualization gives insight into the inner machinery of a trained model

• Model learns intuitive baseline features and combines them to useful higher level

  abstractions which are similar to features used by human mappers

• Future investigations to analyse the dependencies between features in different layers

Deep Learning on HPC systems

• Training across multiple nodes reduces training time and improves iterative workflow

• Distributed training across nodes allows more efficient usage of available HPC systems

• Future work: Investigate possible use cases of new prototype systems like JURON
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