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The Planetary Boundary Layer

The planetary boundary layer is the lower layer of the atmosphere, the layer that feels directly
surface effects on time scales smaller than a day.

Normaly turbulent, because of wind shear or because of convection.
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... planetary boundary layers are crucial in meteorology ...
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Understanding Meter and Submeter Scales Remains a Challenge

In important cases, small scales affect the dynamics of the whole planetary boundary layer:

1. Near the surface: Effects of density stratification in the shear production of turbulence.

2. Near the PBL top: Effects of density stratification and cloud physics in entrainment.
Understanding this coupling between the small and the large scales remains a challenge that
combines fluid mechanics and atmospheric processes. This challenge motivates our work.
Our analysis is based on theory and direct numerical simulations.

Key novelty: Reynolds numbers are becoming large enough to observe Reynolds number simi-
larity. Production runs with grid sizes 20482 x 1024 to 51202 x 2048.

= HPC is providing data accurate enough for quantitative analysis.
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Outline

1. Turbulence Collapse in the Stable Boundary Layer



Turbulence Collapse in the Stable Boundary Layer

Work in collaboration with C. Ansorge
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Physical Model: Stably Stratified Ekman Layer

Q angular velocity; Ab buoyancy increment.
G geostrophic wind velocity;
Vp geostrophic pressure gradient.

Two control parameters:

buoyancy forces
Richardson number = M o Ab
inertia forces

inertia forces _
Reynolds number = —— !
viscous forces

Max-Planck-Institut
fur Meteorologie

@

Turbulence Collapse in the Stable Boundary Layer



Model Reproduces Regimes Observed in Nature:
Weakly, Intermediately, and Strongly Stratified
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Strongly stratified regime for Richardson numbers beyond 0.1 — 0.2.
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Spatial Intermittency During Turbulence Collapse
Can Occur Without External Perturbations

Neutrally Stratified Strongly Stably Stratified
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Near-surface enstrophy. Only 1/3 x 1/3 of domain is shown.

..provided that large scales have enough space and time to develop.
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Outline

2. Entrainment Effects on Moisture Statistics



Entrainment Effects on Moisture Statistics
Work in collaboration with M. Puche, A. Haghshenas & C. C. van Heerwaarden
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Moisture field from DNS of 1000 m deep CBL resolved to 2 m.




Aim: Generalize Previous Single-Case Studies on Moisture Statistics
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Specific questions:

1. Obtain dependence on environmental conditions.

2. Obtain characteristic scales in entrainment zone and surface layer.
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Physical Model: Free Convective Boundary Layer

$s,

By: surface buoyancy flux N?2: outer buoyancy gradient h: CBL depth

System depends only on Reynolds number (Pr = 1), and h/Lg, where
Lo = (Bo/N*)"?

is an Ozmidov scale. It provides a reference entrainment-zone thickness.

Typical atmospheric midday values: Ly ~ 20 — 200 m (h/Lo ~ 5 — 50).
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Parameter h/L,: Weak- and Strong Stratification Regimes

Weak Stratification Regime: low values of h/Lg (below 1), unsteady.
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Defining an Appropriate Moisture Parameter

¥ < Per ¥ > Per
drying moistening
' ' {Bo, Fq,0} surface buoyancy & moisture fluxes

N? Yq

{~N?~,} buoyancy & moisture lapse rates

buoyancy moisture h CBL depth
® Flux-ratio parameter
3 S (surface moistening vs. entrainment drying)
éBO éFq’O \\ \ h

Besides the Reynolds number and h/Lg, moisture introduces only one parameter. We choose:
o =2Fg0/(Fgo+ Fya)
where Fj, 1 = (74Lo)(N L) is a reference entrainment flux.
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Mean Properties: Drying-to-Moistening Transition at F, o ~ F,; (p ~ 1).

Normalized mean moisture

Normalized moisture flux
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Drying-to-moistening transition occurs when the surface moisture flux F, o becomes compa-
rable with the reference entrainment flux in drying conditions Fj, 1 = (v4Lo) (N Lo).
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3. Entrainment Reduction in Stratocumulus by Droplet Sedimentation
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Small-scale Processes at the Top of Stratocumulus Are Key

4t ? 0,

warm, dry, subsiding free-tropo sfh ere 1

1528 —

entrainment warming, drying

radiative drivin%

' surface heat and moisture fluxes

; 5 cool ocean
0.5 l a3 9‘-5 e 2886 289.6 2076 306.8
1. Longwave radiative cooling
2. Evaporative cooling
3. Turbulent entrainment across a stably stratified region
4. Droplet sedimentation (cloud microphysics)
Max-Planck-|
(@) | roxmanacnu Stevens (2005), Wood (2012) 2




1 m resolution DNS of 800 m deep stratocumulus-topped boundary layer




Quantifying Cloud-Top Mixing: The Mean Entrainment Velocity

Fluxes

Free Bao%

troposphere
» ..'..'.)..E’...., - Radliation

+ Mixed'la
Voo e ST

Boundary
conditions

Cloud-top region

Mixed-layer analysis needs the mean entrainment velocity

dZi
We = E — <'ZU>ZZ .

Cloud-top analysis of meter and submeter-scale phenomena provides it.
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Governing Equations in Eulerian Framework

Disperse and dilute multi-phase flow (liquid volume fraction 10~%) with small Stokes numbers
(< 1072) and moderate settling numbers (= 0.5).

Anelastic approximation to Navier-Stokes equations plus:

enthalpy  pretDih = V- [prpVh — pju(he — h)] = V- (pir)
total water  prefDigr = V- [pryVay — pju(1 — q1)]
liquid water  pretDige = V- [pryVar — pju(1 — q0)] + (0:pae) con -

Cloud processes to be modeled:
1. Radiative flux pjy.
: Latent heat effects.

con’

3. Transport flux pj,: Droplet sedimentation.

@

2. Rate of phase change (9;pqr)
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Cloud-Top Integral Analysis Provides Expression for w,

Evolution equation for the buoyancy b (normalized density anomaly) can be derived from the
linearized equations of state:

Db = V-[kpVb = ju(be — )] = BrV ir + By, (9e40) con -
(B; are thermodynamic partial derivatives.)

Integral analysis from inversion height z; upwards yields analytical expressions to calculate we:

Zoo

we(AD),; =~ _<wlbl>zi + Bn(Agr)z; — qu/ (0¢40) con Az — g{|dpul) 2,

Zi

= We = (we)mix + (we)rad + (we)eva + (we)sed

(g is the magnitude of the gravity acceleration.)
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Resolving Meter and Submeter Scales at the Cloud Top

Cloud Boundary + Turbulence Interface + Capping Inversion
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Example of the need for this resolution: Reduction of w, by droplet sedimentation.
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Model for Gravitational Settling of Droplets: Assumed Droplet-Size Distribution

Since the transport flux is

Pip = paeld®/(dd3)]us0 = pogeo(n/no)(d/dg)us, ,

we need a model for the 5.-order moment of the droplet-size distribution, and then either the
3.-order moment or the cloud-droplet number density.

Following previous work, we assume a log-normal distribution with a constant number density,
which leads to

&5 /(d3dg) = exp[50°)(qe/ae0)* -
We consider a narrow distribution (0, ~ 1.0) and a broad one (o, ~ 1.5), where . = exp(0).

What is the effect of small-scale turbulence?
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Droplet Sedimentation Can Reduce Entrainment Significantly
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1. It depends on the meteorological conditions.

2. It depends on droplet-size distribution.
3. Almost 50% reduction of w,., 2—3 times larger than previously reported.
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Two Contributions from Droplet Sedimentation to Entrainment Velocity

Integral analysis yields analytical expressions to calculate we:

We = (we)mix + (we)rad + (we)eva + (we)sed .

Two contributions:

1. Direct contribution: Increase of mean buoyancy for z > z; by removal of droplets translates
into a negative (wWe)sed

(we)sea = —g(ljul) /(Ab)z, o qed®/d® o nd®

Responsible for almost 30% of the reduction.

2. Indirect contribution: Changes in (we)mix + (We)rad + (We)eva. In particular, reduction of
cloud-top cooling because of removal of droplets.
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Outline

4. Direct Numerical Simulation of Stratocumulus-Topped Boundary Layers



1 m resolution DNS of 800 m deep stratocumulus-topped boundary layer




Approaching Reynolds Number Similarity
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1. A Kolmogorov scale of ~ 1.4 m reproduces the central distribution of LES models.

2. A Kolmogorov scale of ~ 0.7 m reproduces more that 70% of measured LWP, about 90%
of skewness of vertical velocity.
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Approaching Reynolds Number Similarity
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1. A Kolmogorov scale of ~ 1.4 m reproduces the central distribution of LES models.

2. A Kolmogorov scale of ~ 0.7 m reproduces more that 70% of measured LWP, about 90%
of skewness of vertical velocity. Why?
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Resolving the Ozmidov Scale in the Cloud-Top Region
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We start to represent motions smaller than the Ozmidov scale, which is the lower bound of
length scales strongly influenced by stable stratification.
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Summary & Conclusions

Meter and submeter scales can be key for the dynamics of planetary boundary layers

Near the surface:

Turbulence collapse in stable boundary layers can occur intermittently
in space without external perturbations.

Near the boundary-layer top:

Droplet sedimentation can reduce substantially cloud-top mixing:
better characterization of droplet-size distribution needed.

I 'm

Laboratory experiments, field measurements, and numerical simulations
are reaching the accuracy necessary to solve long-standing problems
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