Hadron-Hadron Interactions from Lattice QCD

Carsten Urbach

HISKP, University of Bonn
European Twisted Mass Collaboration

NIC Symposium, February 2018

Motivation: The Theory of Strong Interactions

- Quantum Chromodynamics "theory of strong interactions"
- interaction of quarks and gluons
- strongly coupled at low energies \rightarrow see previous talk
- not solvable analytically
- despite, astonishing simple action

ELEMENTARY PARTICLES

$$
S\left[A_{\mu}, \bar{\psi}, \psi\right]=\int d^{4} x\left\{\frac{1}{4} F_{\mu \nu}^{2}+\bar{\psi}\left(\gamma_{\mu} D_{\mu}+m_{q}\right) \psi\right\}=S_{\mathrm{G}}+S_{f}
$$

Motivation: Particle Zoo

QCD gives rise to a very rich particle spectrum, here nucleon, Δ and Λ

[PDG 2016, picture: B. Metsch]

- most states are resonances
\Rightarrow first principles theoretical computation highly valuable

Motivation: Particle Zoo

QCD gives rise to a very rich particle spectrum, here nucleon, Δ and Λ

[PDG 2016, picture: B. Metsch]

- most states are resonances
\Rightarrow first principles theoretical computation highly valuable
- consider a simple, driven damped harmonic oscillator

- equations of motion

$$
\dot{x}^{2}+2 D \omega_{0} \dot{x}+\omega^{2} x=A \sin (\omega t)
$$

- solution is known

$$
x(t)=A^{\prime} \sin (\omega t+\delta)
$$

- for D small, a resonance occurs

- consider a simple, driven damped harmonic oscillator

- equations of motion

$$
\dot{x}^{2}+2 D \omega_{0} \dot{x}+\omega^{2} x=A \sin (\omega t)
$$

- solution is known

$$
x(t)=A^{\prime} \sin (\omega t+\delta)
$$

- for D small, a resonance occurs

What is a resonance?

- resonance amplification in the amplitude ratio
- phase shift δ crosses $\pi / 2$

Scattering of Particles

- consider interaction of finite range R, spherically symmetric

- incoming and outgoing waves differ by a phase shift
- scattering amplitude in the partial wave expansion

$$
f_{k}(\theta)=-\frac{8 \pi}{M} \sum_{\ell=0}^{\infty}(2 \ell+1) f_{\ell}(k) P_{\ell}(\cos \theta)
$$

with partial wave amplitude and phase shift δ_{ℓ}

$$
f_{\ell}(k)=\frac{1}{k \cot \delta_{\ell}(k)-i k}
$$

Scattering of Particles

- it actually suffices to know the phase shifts $\delta_{\ell}(k)$
- often, even a single partial wave is enough (due to symmetries)
\Rightarrow at small energies (small k) one can expand

$$
k^{2 \ell+1} \cot \delta_{\ell}=\frac{1}{a_{\ell}}+\frac{r}{2} k^{2}+\ldots
$$

- a_{ℓ} scattering length, r effective range

Example: ρ Resonance

- ρ : lowest QCD resonance
- in $\pi \pi$ channel with $I=1$
- experimentally well measured
- clear signal in the amplitude

[Barkov et al., Nucl.Phys. B256 (1985)]

Example: ρ Resonance

- ρ : lowest QCD resonance
- in $\pi \pi$ channel with $I=1$
- experimentally well measured
- clear signal in the amplitude
- and nice phase shift

[Barkov et al., Nucl.Phys. B256 (1985)]

Lattice Regularisation

- work in Euclidean space-time
- lattice regularisation: discretise space-time
- hyper-cubic $L^{3} \times T$-lattice with lattice spacing a
\Rightarrow momentum cut-off: $k_{\max } \propto 1 / a$
- derivatives \Rightarrow finite differences
- integrals \Rightarrow sums
- gauge potentials A_{μ} in $G_{\mu \nu} \Rightarrow$ link matrices $U_{\mu}\left({ }^{\prime} \Longleftrightarrow{ }^{\prime}\right)$

- finite volume: quantised energy levels
- showstopper: particle interactions cannot be studied directly [Maiani and Testa, (1990)]

Lüscher Method

instead: use finite volume as vehicle...

- for $V \rightarrow \infty$:
\Rightarrow interaction probability very low
$\Rightarrow E_{2 p}(p=0)=2 M_{1 p}$

Lüscher Method

instead: use finite volume as vehicle...

- for $V \rightarrow \infty$:
\Rightarrow interaction probability very low
$\Rightarrow E_{2 p}(p=0)=2 M_{1 p}$
- for finite V :
\Rightarrow interaction probability rises
$\Rightarrow E_{2 p}(p=0)$ receives corrections $\propto 1 / V$

Lüscher Method

instead: use finite volume as vehicle...

- for $V \rightarrow \infty$:
\Rightarrow interaction probability very low
$\Rightarrow E_{2 p}(p=0)=2 M_{1 p}$
- for finite V :
\Rightarrow interaction probability rises
$\Rightarrow E_{2 p}(p=0)$ receives corrections $\propto 1 / V$
- Lüscher: correction in $1 / V$ related to scattering properties!
[Lüscher, 1986]

Uncertainties

- Euclidean space-time \Rightarrow Monte Carlo Methods
\Rightarrow statistical errors
- and systematic errors:
- lattice spacing effects \Rightarrow continuum limit, lattice spacing $a \rightarrow 0$, \Rightarrow remove leading order lattice artefacts
- finite size effects \Rightarrow thermodynamic limit, physical volume $L^{3} \rightarrow \infty$, \Rightarrow use chiral effective field theories.
- chiral effects \Rightarrow chiral limit, $M_{\mathrm{PS}} \rightarrow M_{\pi}, \quad M_{\pi}^{2} \propto m_{\ell}$, \Rightarrow use chiral effective field theories.
or simulate directly at the physical point!

Example: ϕ^{4} Theory

Example: Complex ϕ^{4} Theory

- complex ϕ^{4} theory as toy model
- lattice action

$$
S=\sum_{x}\left(-\kappa \sum_{\mu}\left(\varphi_{x}^{\star} \varphi_{x+\mu}+c c\right)+\lambda\left(\left|\varphi_{x}\right|^{2}-1\right)^{2}+\left|\varphi_{x}\right|^{2}\right)
$$

- perform threshold expansion

$$
k^{2 \ell+1} \cot \delta_{\ell}=\frac{1}{a_{\ell}}+\frac{r}{2} k^{2}+\ldots
$$

- then, the finite volume dependence reads
[Lüscher, 1986]

$$
\delta E_{2}=E_{2}-2 E_{1}=-\frac{4 \pi a_{0}}{m L^{3}}\left(1+c_{1} \frac{a_{0}}{L}+c_{2}\left(\frac{a_{0}}{L}\right)^{2}+\frac{2 \pi r a_{0}^{2}}{m^{2} L^{3}}+\ldots\right)
$$

Example: Complex ϕ^{4} Theory

- can study arbitrary volumes
- for chosen parameter: repulsive
- depending on fit range sensitive to a_{0} or r
- for too small L description breaks down

$\Rightarrow \Delta E_{2}$ gives access to a_{0} and r

Example: Complex ϕ^{4} Theory

- three particle formula

$$
\Delta E_{3}=E_{3}-3 E_{1}=\frac{12 \pi a_{0}}{m L^{3}}\left(1+\ldots+\left(\frac{a_{0}}{\pi L}\right)^{3}\left(A+c_{L} \log \frac{m L}{2 \pi}\right)\right)
$$

[see e.g. Sharpe 2017]

- A and c_{L} encode three body interaction
- data well described
- a_{0}, r input from ΔE_{2}
- clear evidence for non-zero three particle interaction!

Example: Complex ϕ^{4} Theory

- every volume translates into one scattering momentum

$\pi-\pi$ Scattering with $I=2$

- weakly repulsive channel
- very interesting check of chiral perturbation theory
- at small momenta $k \rightarrow 0$ use effective range expansion

$$
k^{2 \ell+1} \cot \delta_{\ell}=\frac{1}{a_{\ell}}+\mathcal{O}\left(k^{2}\right)
$$

scattering length a_{ℓ}

- only S-waves $(\ell=0)$ contribute (to a good approximation)
- results from experiment plus Roy equations available
\Rightarrow benchmark quantity for lattice QCD

$\pi-\pi$ Scattering with $I=2$: Finite Volume Dependence

Lüscher formula (known constants c_{i})

$$
\delta E=E_{2 p}-2 E_{1 p}=-\frac{4 \pi a_{0}}{M_{\pi} L^{3}}\left(1+c_{1} \frac{a_{0}}{L}+c_{2} \frac{a_{0}^{2}}{L^{2}}\right)+\mathcal{O}\left(L^{-6}\right),
$$

- valid, if other FS corrections small
- three ensembles with identical parameters but L
- smallest L deviates a few sigma
- smallest L too small
- all other ensembles have comparably larger L-values

$\pi-\pi$ Scattering with $I=2$: ChiPT Fits

- ChiPT formula at NLO ${ }_{\text {[Beane etal, (2005,2007]] }}$

$$
M_{\pi} a_{0}=-\frac{M_{\pi}^{2}}{8 \pi f_{\pi}^{2}}\left\{1+\frac{M_{\pi}^{2}}{16 \pi^{2} f_{\pi}^{2}}\left[3 \ln \frac{M_{\pi}^{2}}{f_{\pi}^{2}}-1-\ell_{\pi \pi}^{I=2}\left(\mu_{R}=f_{\pi, \text { phys }}\right)\right]\right\}
$$

- functional form highly constraining
- surprisingly small deviations from LO ChiPT
- lattice artefacts small (in fact $\mathcal{O}\left(a^{2} m_{q}\right)$)
- see JHEP 1509 (2015) 109

$\pi-\pi$ Scattering with $I=2$: Summary

- result:

$$
M_{\pi} a_{0}^{I=2}=-0.0442(2)_{\mathrm{stat}}\left({ }_{-0}^{+4}\right)_{\mathrm{sys}}, \quad \ell_{\pi \pi}^{I=2}=3.79(0.61)_{\mathrm{stat}}\left({ }_{-0.11}^{+1.34}\right)_{\mathrm{sys}}
$$

[ETMC, Helmes, CU, et al, (2015)]

$\pi-K$ Scattering

Elastic Scattering of Strange Mesons

- now replace one of the pions by a kaon
- two isospin channels: $I=1 / 2$ and $I=3 / 2$
- $I=1 / 2$ similar to $I=0 \pi-\pi$
$I=3 / 2$ similar to $I=2 \pi-\pi$
- DIRAC determined difference a_{0}^{-}from $\tau_{1 S}$ of πK atoms
[DIRAC, Phys. Rev. D 96, 052002 (2017)]
- with isospin odd scattering length $a_{0}^{-}=\frac{1}{3}\left(a_{0}^{1 / 2}-a_{0}^{3 / 2}\right)$
- so far only lattice data for one lattice spacing available in literature

Strange Quark Mass Tuning

- value of sea strange quark mass up to 10% off
- corrected for by varying the valence strange quark mass
\Rightarrow small unknown systematic uncertainty
- interpolate linearly in $M_{K}^{2}-0.5 M_{\pi}^{2}$
- input: M_{K}, M_{π} and lattice spacing
- now work at fixed strange quark mass value

Chiral extrapolation

- $\mu_{\pi K} a_{0}$ known from χ-pt at NLO:

$$
\begin{aligned}
\mu_{\pi K} a_{0}^{3 / 2}=\frac{\mu_{\pi K}^{2}}{4 \pi f_{\pi}^{2}} & \left\{\frac{32 M_{\pi} M_{K}}{f_{\pi}^{2}} L_{\pi K}\left(\Lambda_{\chi}\right)-1-\frac{16 M_{\pi}^{2}}{f_{\pi}^{2}} L_{5}\left(\Lambda_{\chi}\right)\right. \\
& \left.+\frac{1}{16 \pi^{2} f_{\pi}^{2}} \chi_{N L O}^{3 / 2}\left(\Lambda_{\chi}, M_{\pi}, M_{K}, M_{\eta}\right)\right\}
\end{aligned}
$$

- $\mu_{\pi K}$ reduced mass of $\pi-K$ system
- $\chi_{\text {NLO }}^{3 / 2}$ involves chiral logarithms.
- two LECs: L_{5} and $L_{\pi K}$
- difficult to disentangle
\Rightarrow use prior for $L_{5}=5.41(3) \cdot 10^{-3}$
[HPQCD, (2013)]

Comparison to Experiment

- recall, DIRAC experiment measures only a^{-}

$$
a_{0}^{1 / 2}=a^{+}+2 a^{-}, \quad a_{0}^{3 / 2}=a^{+}-a^{-}
$$

- $a^{ \pm}$can both be expanded in ChPT
- once one knows L_{5} and $L_{\pi K}$, one can compute $a^{ \pm}$(and $a_{0}^{1 / 2}$)
- we obtain

	$\left(M_{\pi} a_{0}^{1 / 2}\right)^{\text {phys }}$	$\left(M_{\pi} a_{0}^{3 / 2}\right)$	$M_{\pi} a_{0}^{-}$
This Work	$0.165(1)$	$-0.059(1)$	$0.0744(2)$
NPLQCD	$0.173(2)$	$-0.057(2)$	$0.0773(10)$
DIRAC	-	-	$0.072_{(-20)}^{(+31)}$

$\pi-\pi$ Scattering with $I=1$: the ρ resonance

The ρ Resonance from Lattice QCD (preliminary)

- phase shift δ_{1} as a function of scattering energy
- here: single ensemble
- unphysically large pion mass
- clear resonance signature
- could determine mass and width

Numerics for Lattice QCD

- the core of our computation is the Dirac kernel
- highly symmetric and sparse matrix stencil

$$
\begin{aligned}
{\left[M_{e o} \psi_{o}\right](x)=} & \sum_{\mu} \kappa_{\mu}\left(U_{\mu}(x)\left(1-\gamma_{\mu}\right) \psi_{o}(x+\hat{\mu})\right. \\
& \left.\left.+U_{\mu}^{\dagger}(x-\hat{\mu})\left(1+\gamma_{\mu}\right) \psi_{o}(x-\hat{\mu})\right)\right]
\end{aligned}
$$

- μ runs over x, y, z, t directions
- x runs over space-time volume
- kernel ill condinioned, needs to be inverted very often using an iterative solver like CG (or multi-grid)
- code tuning is highly critical for us!
- Juqueen is and isn't a beautiful machine at the same time!

Numerics for Lattice QCD

- the core of our computation is the Dirac kernel
- highly symmetric and sparse matrix stencil

$$
\begin{aligned}
{\left[M_{e o} \psi_{o}\right](x)=} & \sum_{\mu} \kappa_{\mu}\left(U_{\mu}(x)\left(1-\gamma_{\mu}\right) \psi_{o}(x+\hat{\mu})\right. \\
& \left.\left.+U_{\mu}^{\dagger}(x-\hat{\mu})\left(1+\gamma_{\mu}\right) \psi_{o}(x-\hat{\mu})\right)\right]
\end{aligned}
$$

- μ runs over x, y, z, t directions
- x runs over space-time volume
- kernel ill condinioned, needs to be inverted very often using an iterative solver like CG (or multi-grid)
- code tuning is highly critical for us!
- Juqueen was and wasn't a beautiful machine at the same time!

Numerics for Lattice QCD

kernel performance tuning for BG/Q

- plain C is not acceptable

Numerics for Lattice QCD

kernel performance tuning for BG/Q

- plain C is not acceptable

Numerics for Lattice QCD

kernel performance tuning for $B G / Q$

- plain C is not acceptable
- explore vector unit (QPX)
- MPI hits badly

Numerics for Lattice QCD

kernel performance tuning for $B G / Q$

- plain C is not acceptable
- explore vector unit (QPX)
- MPI hits badly
- use low level communication (SPI)

Numerics for Lattice QCD

kernel performance tuning for $B G / Q$

- plain C is not acceptable
- explore vector unit (QPX)
- MPI hits badly
- use low level communication (SPI)
- and get mapping right

\Rightarrow almost no communication overhead and 25% of Peak!

Summary

- very precise $N_{f}=2+1+1$ IQCD results for $I=2 \pi-\pi$ scattering
- continuum extrapolated results for $\pi-K$ scattering with $I=3 / 2$
- using ChPT we also access $\pi-K$ with $I=1 / 2$
- finalising analysis for $\pi-\pi$ with $I=1$ (ρ resonance)
- currently studying $\pi-N$ scattering at physical pion mass (Δ resonance)

Outlook

- compute the binding energy of, say, oxygen directly from Quantum Chromodynamics?
\Rightarrow clearly, a long way to go
- there are many challenges to deal with
- among others:
- binding energy tiny compared to mass of the nucleus
- very large volumes needed
- enormous number of contractions
- resources at JSC will be crucial!
- the lattice QCD group in Bonn:
C. Helmes, C. Jost, B. Knippschild, B. Kostrzewa, L. Liu, M. Oehm, K. Ottnad, M. Petschlies, F. Pittler, F. Romero Lopez, M. Ueding,
M. Werner
- NIC and JSC for providing the resources and the support
- the DFG funding this project in the Sino-German CRC 110
- the ETM collaboration
- ... and for your attention!

