Hadron-Hadron Interactions from Lattice QCD

Carsten Urbach

HISKP, University of Bonn European Twisted Mass Collaboration

NIC Symposium, February 2018

C. Urbach: Hadron-Hadron Interactions from Lattice QCD

Motivation: The Theory of Strong Interactions

- Quantum Chromodynamics "theory of strong interactions"
- interaction of quarks and gluons
- strongly coupled at low energies
 → see previous talk
- not solvable analytically
- despite, astonishing simple action

Fermilab 95-759

$$S[A_{\mu}, \bar{\psi}, \psi] = \int d^4x \; \left\{ \frac{1}{4} F_{\mu\nu}^2 + \bar{\psi} \left(\gamma_{\mu} D_{\mu} + m_q \right) \psi \right\} = S_{\rm G} + S_f$$

QCD gives rise to a very rich particle spectrum, here nucleon, Δ and Λ

- most states are resonances
- \Rightarrow first principles theoretical computation highly valuable

QCD gives rise to a very rich particle spectrum, here nucleon, Δ and Λ

- most states are resonances
- \Rightarrow first principles theoretical computation highly valuable

- equations of motion
 - $\dot{x}^2 + 2D\omega_0\dot{x} + \omega^2 x = A\sin(\omega t)$
- solution is known

 $x(t) = A'\sin(\omega t + \delta)$

• for D small, a resonance occurs

2.0

 $\omega_0 = 1, D = 0.15$

1.5

What is a resonance?

In general: resonances are characterised by

- resonance amplification in the amplitude ratio
- phase shift δ crosses $\pi/2$

• consider interaction of finite range R, spherically symmetric

- incoming and outgoing waves differ by a phase shift
- scattering amplitude in the partial wave expansion

$$f_k(\theta) = -\frac{8\pi}{M} \sum_{\ell=0}^{\infty} (2\ell+1) f_\ell(k) P_\ell(\cos\theta)$$

with partial wave amplitude and phase shift δ_ℓ

$$f_{\ell}(k) = \frac{1}{k \cot \delta_{\ell}(k) - ik}$$

Scattering of Particles

- it actually suffices to know the phase shifts $\delta_{\ell}(k)$
- often, even a single partial wave is enough (due to symmetries)
- \Rightarrow at small energies (small k) one can expand

$$k^{2\ell+1} \cot \delta_{\ell} = \frac{1}{a_{\ell}} + \frac{r}{2}k^2 + \dots$$

• a_{ℓ} scattering length, r effective range

- ρ: lowest QCD resonance
- in $\pi\pi$ channel with I = 1
- experimentally well measured
- clear signal in the amplitude

[Barkov et al., Nucl.Phys. B256 (1985)]

Example: ρ **Resonance**

- ρ: lowest QCD resonance
- in $\pi\pi$ channel with I = 1
- · experimentally well measured
- · clear signal in the amplitude
- · and nice phase shift

[[]Barkov et al., Nucl.Phys. B256 (1985)]

L

- work in Euclidean space-time
- · lattice regularisation: discretise space-time
 - hyper-cubic $L^3 \times T$ -lattice with lattice spacing a
 - \Rightarrow momentum cut-off: $k_{
 m max} \propto 1/a$
 - derivatives \Rightarrow finite differences
 - integrals \Rightarrow sums
 - gauge potentials A_μ in G_{μν} ⇒ link matrices U_μ ('→→→')

- finite volume: quantised energy levels
- showstopper: particle interactions cannot be studied directly

[Maiani and Testa, (1990)]

instead: use finite volume as vehicle ...

- for $V \to \infty$:
- \Rightarrow interaction probability very low

$$\Rightarrow E_{2p}(p=0) = 2M_{1p}$$

instead: use finite volume as vehicle ...

- for $V \to \infty$:
- \Rightarrow interaction probability very low

$$\Rightarrow E_{2p}(p=0) = 2M_{1p}$$

- for finite V:
- \Rightarrow interaction probability rises
- $\Rightarrow E_{2p}(p=0)$ receives corrections $\propto 1/V$

instead: use finite volume as vehicle ...

- for $V \to \infty$:
- \Rightarrow interaction probability very low

$$\Rightarrow E_{2p}(p=0) = 2M_{1p}$$

- for finite V:
- \Rightarrow interaction probability rises
- $\Rightarrow E_{2p}(p=0)$ receives corrections $\propto 1/V$
 - Lüscher: correction in 1/V related to scattering properties!

[Lüscher, 1986]

- Euclidean space-time ⇒ Monte Carlo Methods
 ⇒ statistical errors
- and systematic errors:
 - lattice spacing effects \Rightarrow continuum limit, lattice spacing $a \rightarrow 0$, \Rightarrow remove leading order lattice artefacts
 - finite size effects \Rightarrow thermodynamic limit, physical volume $L^3 \rightarrow \infty$, \Rightarrow use chiral effective field theories.
 - chiral effects \Rightarrow chiral limit, $M_{PS} \rightarrow M_{\pi}$, $M_{\pi}^2 \propto m_{\ell}$, \Rightarrow use chiral effective field theories. or simulate directly at the physical point!

Example: ϕ^4 Theory

- complex ϕ^4 theory as toy model
- lattice action

$$S = \sum_{x} \left(-\kappa \sum_{\mu} (\varphi_x^* \varphi_{x+\mu} + cc) + \lambda (|\varphi_x|^2 - 1)^2 + |\varphi_x|^2 \right)$$

perform threshold expansion

$$k^{2\ell+1} \cot \delta_{\ell} = \frac{1}{a_{\ell}} + \frac{r}{2}k^2 + \dots$$

then, the finite volume dependence reads

[Lüscher, 1986]

$$\delta E_2 = E_2 - 2E_1 = -\frac{4\pi a_0}{mL^3} \left(1 + c_1 \frac{a_0}{L} + c_2 \left(\frac{a_0}{L}\right)^2 + \frac{2\pi r a_0^2}{m^2 L^3} + \dots \right)$$

- can study arbitrary volumes
- for chosen parameter: repulsive
- depending on fit range sensitive to *a*₀ or *r*
- for too small *L* description breaks down

 $\Rightarrow \Delta E_2$ gives access to a_0 and r

three particle formula

$$\Delta E_3 = E_3 - 3E_1 = \frac{12\pi a_0}{mL^3} \left(1 + \dots + \left(\frac{a_0}{\pi L}\right)^3 \left(A + c_L \log \frac{mL}{2\pi} \right) \right)$$

[see e.g. Sharpe 2017]

- A and c_L encode three body interaction
- data well described
- a_0, r input from ΔE_2
- clear evidence for non-zero three particle interaction!

· every volume translates into one scattering momentum

$\pi - \pi$ Scattering with I = 2

- weakly repulsive channel
- very interesting check of chiral perturbation theory
- at small momenta $k \rightarrow 0$ use effective range expansion

$$k^{2\ell+1} \cot \delta_{\ell} = \frac{1}{a_{\ell}} + \mathcal{O}(k^2)$$

scattering length a_ℓ

- only S-waves ($\ell = 0$) contribute (to a good approximation)
- · results from experiment plus Roy equations available
- \Rightarrow benchmark quantity for lattice QCD

C. Urbach: Hadron-Hadron Interactions from Lattice QCD

$\pi - \pi$ Scattering with I = 2: Finite Volume Dependence

Lüscher formula (known constants c_i)

$$\delta E = E_{2p} - 2E_{1p} = -\frac{4\pi a_0}{M_\pi L^3} \left(1 + c_1 \frac{a_0}{L} + c_2 \frac{a_0^2}{L^2} \right) + \mathcal{O}(L^{-6}),$$

- valid, if other FS corrections small
- three ensembles with identical parameters but *L*
- smallest L deviates a few sigma
- smallest L too small
- all other ensembles have comparably larger *L*-values

ChiPT formula at NLO [Beane et al, (2005,2007)]

$$M_{\pi}a_{0} = -\frac{M_{\pi}^{2}}{8\pi f_{\pi}^{2}} \left\{ 1 + \frac{M_{\pi}^{2}}{16\pi^{2}f_{\pi}^{2}} \left[3\ln\frac{M_{\pi}^{2}}{f_{\pi}^{2}} - 1 - \ell_{\pi\pi}^{I=2}(\mu_{R} = f_{\pi,\text{phys}}) \right] \right\}$$

- functional form highly constraining
- surprisingly small deviations from LO ChiPT
- lattice artefacts small (in fact $\mathcal{O}(a^2 m_q)$)
- see JHEP 1509 (2015) 109

result:

$$M_{\pi}a_0^{I=2} = -0.0442(2)_{\text{stat}}\binom{+4}{-0}_{\text{sys}}, \qquad \ell_{\pi\pi}^{I=2} = 3.79(0.61)_{\text{stat}}\binom{+1.34}{-0.11}_{\text{sys}}$$

[ETMC, Helmes, CU, et al, (2015)]

$\pi - K$ Scattering

- now replace one of the pions by a kaon
- two isospin channels: I = 1/2 and I = 3/2
- I = 1/2 similar to $I = 0 \pi \pi$ I = 3/2 similar to $I = 2 \pi - \pi$
- DIRAC determined difference a_0^- from τ_{1S} of πK atoms [DIRAC, Phys. Rev. D 96, 052002 (2017)]
- with isospin odd scattering length $a_0^- = \frac{1}{3}(a_0^{1/2} a_0^{3/2})$
- so far only lattice data for one lattice spacing available in literature

- value of sea strange quark mass up to 10% off
- corrected for by varying the valence strange quark mass

• $\mu_{\pi K} a_0$ known from χ -pt at NLO:

$$\mu_{\pi K} a_0^{3/2} = \frac{\mu_{\pi K}^2}{4\pi f_{\pi}^2} \left\{ \frac{32M_{\pi}M_K}{f_{\pi}^2} L_{\pi K}(\Lambda_{\chi}) - 1 - \frac{16M_{\pi}^2}{f_{\pi}^2} L_5(\Lambda_{\chi}) \right. \\ \left. + \frac{1}{16\pi^2 f_{\pi}^2} \chi_{\mathsf{NLO}}^{3/2}(\Lambda_{\chi}, M_{\pi}, M_K, M_{\eta}) \right\}$$

- $\mu_{\pi K}$ reduced mass of πK system
- $\chi^{3/2}_{\rm NLO}$ involves chiral logarithms.
- two LECs: L_5 and $L_{\pi K}$
- difficult to disentangle
- \Rightarrow use prior for $L_5 = 5.41(3) \cdot 10^{-3}$

[HPQCD, (2013)]

recall, DIRAC experiment measures only a⁻

$$a_0^{1/2} = a^+ + 2a^-, \qquad a_0^{3/2} = a^+ - a^-$$

- a^{\pm} can both be expanded in ChPT
- once one knows L_5 and $L_{\pi K}$, one can compute a^{\pm} (and $a_0^{1/2}$)

we obtain

	$(M_\pi a_0^{1/2})^{phys}$	$(M_{\pi}a_0^{3/2})$	$M_{\pi}a_0^-$
This Work	0.165(1)	-0.059(1)	0.0744(2)
NPLQCD	0.173(2)	-0.057(2)	0.0773(10)
DIRAC	-	-	$0.072^{(+31)}_{(-20)}$

 $\pi - \pi$ Scattering with I = 1: the ρ resonance

The ρ Resonance from Lattice QCD (preliminary)

- phase shift δ₁ as a function of scattering energy
- here: single ensemble
- unphysically large pion mass
- clear resonance signature
- could determine mass and width

- the core of our computation is the Dirac kernel
- highly symmetric and sparse matrix stencil

$$[M_{eo}\psi_{o}](x) = \sum_{\mu} \kappa_{\mu} \left(U_{\mu}(x)(1-\gamma_{\mu})\psi_{o}(x+\hat{\mu}) + U_{\mu}^{\dagger}(x-\hat{\mu})(1+\gamma_{\mu})\psi_{o}(x-\hat{\mu}) \right)]$$

- μ runs over x, y, z, t directions
- x runs over space-time volume
- kernel ill condinioned, needs to be inverted very often using an iterative solver like CG (or multi-grid)
- code tuning is highly critical for us!
- Juqueen is and isn't a beautiful machine at the same time!

- the core of our computation is the Dirac kernel
- highly symmetric and sparse matrix stencil

$$[M_{eo}\psi_{o}](x) = \sum_{\mu} \kappa_{\mu} \left(U_{\mu}(x)(1-\gamma_{\mu})\psi_{o}(x+\hat{\mu}) + U_{\mu}^{\dagger}(x-\hat{\mu})(1+\gamma_{\mu})\psi_{o}(x-\hat{\mu}) \right)]$$

- μ runs over x, y, z, t directions
- x runs over space-time volume
- kernel ill condinioned, needs to be inverted very often using an iterative solver like CG (or multi-grid)
- code tuning is highly critical for us!
- Juqueen was and wasn't a beautiful machine at the same time!

kernel performance tuning for BG/Q

• plain C is not acceptable

kernel performance tuning for BG/Q

- plain C is not acceptable
- explore vector unit (QPX)

kernel performance tuning for BG/Q

- plain C is not acceptable
- explore vector unit (QPX)
- MPI hits badly

kernel performance tuning for BG/Q
plain C is not acceptable
explore vector unit (QPX)
MPI hits badly
use low level communication

(SPI)

\Rightarrow almost no communication overhead and 25% of Peak!

- very precise $N_f = 2 + 1 + 1$ IQCD results for $I = 2 \pi \pi$ scattering
- continuum extrapolated results for πK scattering with I = 3/2
- using ChPT we also access πK with I = 1/2
- finalising analysis for $\pi \pi$ with I = 1 (ρ resonance)
- currently studying πN scattering at physical pion mass (Δ resonance)

Outlook

- compute the binding energy of, say, oxygen directly from Quantum Chromodynamics?
- \Rightarrow clearly, a long way to go
 - · there are many challenges to deal with
 - among others:
 - binding energy tiny compared to mass of the nucleus
 - very large volumes needed
 - enormous number of contractions
 - resources at JSC will be crucial!

• the lattice QCD group in Bonn:

C. Helmes, C. Jost, B. Knippschild, B. Kostrzewa, L. Liu, M. Oehm, K. Ottnad, M. Petschlies, F. Pittler, F. Romero Lopez, M. Ueding, M. Werner

- NIC and JSC for providing the resources and the support
- the DFG funding this project in the Sino-German CRC 110
- the ETM collaboration
- ... and for your attention!