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Collective Dynamics in Self-Propelled Agents

[Daniel Biber, Wildlife Photography
Award 2017]

[Nicholas Hope,
http://www.bubblevision.com/]

[Matthew Copeland, U
Wisonsin, Madison]

birds flock, fish school, insects swarm, bacteria move collectively

emergent phenomena on many length scales

interaction mechanisms? minimal models for collective behavior?
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Collective Dynamics in Biological Tissue

cell structures show collective rearrangements
driven by active processes

molecular crowding slows down the motion
self propulsion speeds up
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Figure 4. Dynamic heterogeneity at low (left) and high (right) cell densities.
(a) Phase contrast image of cells seeded at a low and a high density at t = 5 min.
(b) Random spatial distribution of cell velocity (color coded) and the displace-
ment field of the monolayer (arrows) at t = 5 min. (c) Phase contrast image of
cells seeded at a low and a high density 955 min after the measurement started.
(d) Spatially heterogeneous velocity distribution of cells in the migrating sheet
at t = 955 min. The displacement fields are uni-directional, thus suggesting
ballistic motions.

there was a spatially heterogeneous dynamics, which is typical of a glass-like system and
emanates from the cooperative motion of cells, i.e. faster cells move together, while slower cells
stick together.

3.3. Intramonolayer dynamics

The comparison of epithelial and fibroblast cell motion showed that a stable cell boundary
cannot be maintained if cells move randomly as individual cells. To determine the collectivity
in migration of MCF-10A cells, we calculated the spatial velocity autocorrelation at various
times. The spatial velocity autocorrelation was defined as

C(δx)t =

〈
vy(x) · vy(x + δx)

〉〈
vy(x) · vy(x)

〉 , (3)

where v = (r(t + δt) − r(t)) / (δt) and r(t) defined in equation (2) is the position of a cell at
some time (t) determined from equation (1). 〈· · ·〉 is the mean of the velocity in the y-direction.

New Journal of Physics 14 (2012) 115012 (http://www.njp.org/)

velocities in wound healing [Nnetu et al., New J Phys (2012)]

[Bi et al., Phys Rev X (2016)]
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Microswimmers: Janus particles

active-particle systems harvest energy
⇒ directed motion

model systems for non-equilibrium stat. phys.:
Janus-particle colloids in specific solvents

H3C N CH3

[C. Bechinger lab, U Stuttgart]
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Motility-Induced Phase Separation (MIPS)

[Buttinoni et al., Phys Rev Lett (2013)]

active Brownian particles form dynamic clusters

non-equilibrium analogue to liquid–gas phase separation (!?)

mechanism: swim lower at high density (interaction effect)
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Active Brownian ParticlesActive Brownian Particles
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Active Brownian Hard Spheres

hard spheres: spherical steric interactions

activity: individual drift with random (uncoupled) direction

7 / 36



Brownian MotionBrownian Motion
Active Brownian ParticlesActive Brownian Particles
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Passive Colloidal Systems: Brownian Motion

[Perrin, Ann Chim Phys VIII (1909)]

a ∼ 1 µm sized particles in
suspension

perpetual agitated, erratic motion

not connected to “living force”

Jan Ingenhousz (1785): coal dust

Robert Brown (1827): pollen

Jean-Baptiste Perrin
Nobel prize (1926)

scales:
kT ∼ 4 pN nm
a ∼ µm
τ ∼ ms
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Brownian Motion: Statistical Interpretation

collisions with solvent molecules⇒ independent displacements

p(∆~r, t) =
1

(4πDt)3/2
e−∆~r 2/4Dt

solves diffusion equation – diffusion coefficient D

∂tp = D ~∇2p

mean-squared displacement (MSD) is diffusive

〈∆~r 2〉 = (2d)Dt

Stokes-Einstein(-Sutherland) relation: consequence of
fluctuation-dissipation theorem (FDT)

D = kBT /ζ
fluctuation dissipation

diffusivity D⇔ mobility µ = 1/ζ
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Smoluchowski Equation

N -particle configuration-space distribution function p(Γ, t),

∂tp+∇ · (up) = 0

u = µ · F −D · ∇ ln p

Smoluchowski (1905):

∂tp = ∇ ·D · (∇− βF )p β = 1/kT

equivalent stochastic differential equation (Langevin):

d~rj = µ~Fj dt+
√

2Dd ~Wj

FDT, and F = −∇U
⇒ MSD at most diffusive, 〈δr2(t)〉 = o(t)
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Passive High-Density Dynamics: Glass Transition

structural relaxation time τ →∞
“cage effect” – MSD subdiffusive

fluid

dynamical response functions
decay to zero

glass

response to perturbation
never decays
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Active MotionActive Motion
Active Brownian ParticlesActive Brownian Particles
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Model: Active Brownian Particles (2D)

Brownian motion with “active drift” term
along instantaneous orientation ~e(ϕ) = (cosϕ, sinϕ)T

~e(ϕ)
ϕ

d~rj = µ~Fj dt+ v0~e(ϕj) dt+
√

2Dtd ~Wj , Dt = kT/ζ ,

dϕj =
√

2DrdWϕ,j

Smoluchowski equation

∂tp(Γ, t) = Ω(Γ) p(Γ, t) Γ ≡ {~rj , ϕj}j=1,...N

Ω = Dt

∑
j
~∇j · (~∇j − β ~Fj)− v0

~∇j · ~e+Dr∂
2
ϕj
≡ Ωeq + δΩ
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Low-Density Active Brownian Motion: Effective Diffusion

[Berg, Random Walks in Biology
(Princeton, 1983)]

` ∼ v0/Dr

Dswim ∼ `2/∆t

Deff ∼ Dt + v20/Dr
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Low-Density Active Brownian Motion: Experiment

of active particles in confinement are available in Supplementary
Movies 1–3.

Explosion of a ‘swimmer-crystal’. We have focused thus far on a
dilute concentration of swimmers subjected to a relatively
weak trap. Using a stronger trap, all swimmers that wander
within the trapping region (B150 mm radius from trap centre)
are pulled towards the trap centre and form a dense close-packed
2D crystal (see Fig. 3a,e).

When the trap is subsequently turned off, the crystal quickly
‘melts’ or ‘explodes’ and the constituent particles swim away
(see progression in Fig. 3). Videos of the accumulation, crystal
formation, and melting process are available in Supplementary
Movies 4–6. On first glance, this process resembles the melting of
an active crystal due to the constituents’ sudden loss of motility15.
Palacci et al.15 use polymer/hematite particles that self-propel and
interact with each other via long-ranged phoretic attraction in the
presence of blue–violet light. Due to concentration–field
interaction, the particles cluster and form crystals in the
presence of light. When light is shut off, the crystal melts
because the particles’ motility and concentration–field
interactions are turned off, and the now-passive particles spread
with their translational Brownian diffusivity—the entire melting
process is diffusive. In contrast, our active crystal explodes due to
a sudden loss of an external trap forcing the particles together,
not the slow diffusion process caused by a loss of swimmer
motility. Thus, the motion of the spreading swimmers is still that
of active particles—translating with speed U0 in randomly
oriented directions that relax with the reorientation timescale tR.

We observe three time regimes in the explosion process. For
times very short after release, only the swimmers positioned along
the periphery of the crystal, escape the crystal. Particles in the
centre obstruct each others’s paths and are unable to escape the
crystal, so the density is peaked at the origin (Fig. 3b,f). During
the second regime the escaped particles move ballistically
outwards in the direction given by their random initial
orientation. The swimmers move ballistically because they have
not yet reoriented sufficiently to be diffusive (that is, times tttR).
The result is a depletion of particles from the origin (given the
initial crystal is small; see below) and a peak in the density that
propagates outward like a travelling wave (Fig. 3c,g). Finally, for
times t � tR the swimmers have reoriented sufficiently to
behave diffusively (Fig. 3d,h) characterized by the translational
diffusivity D¼D0þDswim where D0 is the Stokes–Einstein–
Sutherland diffusivity and Dswim¼U2

0 tR=2. In this regime, the
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Figure 2 | Probability distribution of confined active Janus particles.

(a) 2 mm swimmers with a � ktR=z¼0:29 follow a Boltzmann distribution

(solid black curve is the analytical theory, equation 1). (b) Distribution of

3mm swimmers with a¼ 1.76 has a peak near Rc¼ zU0/k (vertical dashed

black line) and decreases to zero for r4Rc. In both a,b, the red and blue

symbols are data from experiment and Brownian dynamics simulations,

respectively. Data are averages of measurements of over 500 snapshots for

a duration of 50 s, each frame consisting E100 and 20 particles for the

a¼0.29 and a¼ 1.76 cases, respectively.
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Figure 1 | Active Janus particles in a weak acoustic trap. (a–c) Snapshots of 2 mm swimmers in an acoustic trap. The solid red spot indicates the trap

centre and the dashed white circle delineates the outer edge of the well. The swimmer shown inside the solid white circle undergoes active Brownian

motion while exploring the confines of the trap. (d) Two-dimensional trajectories of several particles inside the trap.
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[Takatori et al., Nature Commun (2016)]

[Takatori, Yan, Brady, Phys Rev Lett (2014)]

in confinement L� `:
effective equilibrium

“swim pressure”

p = ρζDeff = ρkTeff

“effective temperature”
Teff/T = 1 + v2

0/2Dr
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(a) 2 mm swimmers with a � ktR=z¼0:29 follow a Boltzmann distribution

(solid black curve is the analytical theory, equation 1). (b) Distribution of

3mm swimmers with a¼ 1.76 has a peak near Rc¼ zU0/k (vertical dashed

black line) and decreases to zero for r4Rc. In both a,b, the red and blue

symbols are data from experiment and Brownian dynamics simulations,

respectively. Data are averages of measurements of over 500 snapshots for

a duration of 50 s, each frame consisting E100 and 20 particles for the
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Figure 1 | Active Janus particles in a weak acoustic trap. (a–c) Snapshots of 2 mm swimmers in an acoustic trap. The solid red spot indicates the trap

centre and the dashed white circle delineates the outer edge of the well. The swimmer shown inside the solid white circle undergoes active Brownian

motion while exploring the confines of the trap. (d) Two-dimensional trajectories of several particles inside the trap.
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[Takatori et al., Nature Commun (2016)]

[Takatori, Yan, Brady, Phys Rev Lett (2014)]

in confinement L� `:
effective equilibrium

“swim pressure”

p = ρζDeff = ρkTeff

“effective temperature”
Teff/T = 1 + v2

0/2Dr
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Activity as Effective Temperature?

low density: activity 7→ Teff ∼ v2
0/Dr

Question:
still true at high density?

`interaction . `p

Answer:
NO!

“Thank you for your attention.”
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Mode-Coupling Theory of the Glass Transition

transient density correlation function

Sll′(~q, t) = 〈%l(~q) exp[Ω†t]%l′(~q)〉eq %l(~q) =
∑

j
ei~q·~rjeilϕj

Mori-Zwanzig formalism, mode-coupling approximation

∂tS(~q, t) + ωT+R(~q) · S−1(q) · S(~q, t) +

∫ t

0
m(~q, t− t′) · ω−1

T (~q) ·
[
∂t′S(~q, t′) + ωR · S(~q, t′)

]
dt′ = 0

mll′(~q, t) ≈
1

2N

∑

~p,l1...l4

Vll1l2(~q,~k, ~p)V+
l′l3l4

(~q,~k, ~p)Φl1l3(~k, t)Φl2l4(~p, t)

ωT,ll′(~q) = q2Dtδll′ −
iv0

2
qei(l−l

′)ϕqSll(q)δ|l−l′|,1 ωR,ll′ = l2Drδll′

Glass Transition

F (q) = lim
t→∞

S(q, t)

{
6= 0 glass

= 0 fluid
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Numerics

M coupled nonlinear integro-differential equations in t ∈ [0, T ],
typically M = 103, T = 106...10

∂tf(t) = −a f(t)−
∫ t

0
m[f(t− t′), f(t− t′)] ∂t′f(t′) dt′

straightforward discretization in t-domain, f(t) 7→ fi ∈ CM
implicit equation for each time step (solved by O(100...5) iterations)

A · fi = B ·m[fi, fi] +Ci

most time spent on evaluating m[f, f ]

multi-grid decimation: f (h)
2i 7→ f

(2h)
i (better for integrals)

t− t′
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Slow Relaxation in Active Brownian Particle Systems
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[Liluashvili, Ónody, ThV, Phys Rev E 96, 062608 (2017)]

Glass Transition of Active Brownian Disks
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[Mandal et al., Soft Matter (2016)]

activity softens, then melts the glass

qualitative agreement with simulations of 3D ABP

physics: cage effect + fluidization by activity
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[Liluashvili, Ónody, ThV, Phys Rev E 96, 062608 (2017)]

Rotational Diffusion changes Glass Transition

φ−1 −
lo
g 1
0
(D
r
)

v0
Glass

Fluid

mode-coupling theory

average in the solid phase and anisotropic in the fluid
phase. This highlights the fact that q can be used as a
structural order parameter for the glass transition at all cell
motilities, providing a powerful new tool for analyzing
tissue mechanics.

IV. THREE-DIMENSIONAL JAMMING PHASE
DIAGRAM FOR TISSUES

Having studied the glass transition as a function of v0
and p0 at a large value of Dr, we investigate the full three-
dimensional phase diagram by characterizing the effect of
Dr on tissue mechanics and structure. Dr controls the
persistence time τ ¼ 1=Dr and persistence length or Péclet
number Pe ∼ v0=Dr of cell trajectories; smaller values of
Dr correspond to more persistent motion.
In Fig. 3(a), we show several 2D slices of the three-

dimensional jamming boundary. Solid lines illustrate the
phase transition line identified by the structural order
parameter q ¼ 3.813 as function of v0 and p0 for a large
range of Dr values (from 10−2 to 103). (In Appendix B 2,
we demonstrate that the structural transition line q ¼ 3.813
matches the dynamical transition line for all studied values
of Dr.) In contrast to results for particulate matter [22], this
figure illustrates that the glass transition lines meet at a
single point (p0 ¼ 3.81) in the limit of vanishing cell
motility, regardless of persistence.
Figure 3(b) shows an orthogonal set of slices of the

jamming diagram, illustrating how the phase boundary
shifts as a function of p0 and Dr at various values of v0.
This highlights the interesting result that a solidlike
material at high value of Dr can be made to flow simply
by lowering its value of Dr. The crossover in behavior at
large v0 occurs when the persistence time 1=Dr is
approximately equal to the viscous relaxation time
1=ðμKAA0Þ ¼ 1.

These slices can be combined to generate a three-
dimensional jamming phase diagram for confluent biologi-
cal tissues, shown in Fig. 3(c). This diagram provides a
concrete, quantifiable prediction for how macroscopic
tissue mechanics depends on single-cell properties such
as motile force, persistence, and the interfacial tension
generated by adhesion and cortical tension.
We note that Fig. 3(c) is significantly different from the

jamming phase diagram conjectured by Sadati et al. [12],
which was informed by results from adhesive particulate
matter [14]. For example, in particulate matter adhesion
enhances solidification, while in confluent models adhe-
sion increases cell perimeters or surface area and enhances
fluidization. In addition, we identify “persistence” as a new
axis with a potentially significant impact on cell migration
rates in dense tissues.
To better understand why persistence is so important in

dense tissues, we first have to characterize the transitions
between different cellular structures. In the limit of zero cell
motility, the system can be described by a potential energy
landscape where each allowable arrangement of cell
neighbors corresponds to a metastable minimum in the
landscape. There are many possible pathways out of each
metastable state: some of them correspond to localized cell
rearrangements, while others correspond to large-scale
collective modes. The maximum energy required to tran-
sition out of a metastable state along each pathway is called
an energy barrier [27].
We observe that tissue fluidity can increase drastically

with decreasing Dr at finite cell speeds. This suggests that
different pathways (with lower energy barriers) must
become dynamically accessible at lower values of Dr.
One hint about these pathways comes from the instanta-

neous cell displacements, shown for different values of Dr
in Fig. 4. At high values of Dr (p0 ¼ 3.78, v0 ¼ 0.1), the
instantaneous displacement field is essentially random and

(a) (b) (c)

FIG. 3. (a) The glass transition in v0 − p0 phase space shifts as the persistence time changes. Lines represent the glass transition
identified by the structural order parameter q ¼ 3.81. The phase boundary collapse to a single point at p�

0 ¼ 3.81, regardless ofDr, in the
limit v0 → 0. (b) The glass transition in p0 −Dr phase space shifts as a function of v0 (from top to bottom: v0 ¼ 0.02, 0.08, 0.14, 0.2,
0.26). For large v0 there is a crossover in the behavior at Dr ∼ μKAA0 ¼ 1, as discussed in the main text. (c) The phase boundary
between solid and fluid as a function of motility v0, persistence 1=Dr, and p0, which is tuned by cell-cell adhesion, can be organized into
a schematic 3D phase diagram. Red lines on the surface correspond to iso-v0 contours and blue lines correspond to iso-Dr contours.

MOTILITY-DRIVEN GLASS AND JAMMING TRANSITIONS … PHYS. REV. X 6, 021011 (2016)

021011-5

simulations of cell-layer model
[Bi et al., PRX (2016)]

iso-kinetic lines not functions of single Teff ∼ v2
0/Dr

competition of length scales: `p = v0/Dr and cage size `c ≈ 0.1a
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Active vs. Passive Glass

passive-particle glass:
transition & structure independent on details of dynamics

“metastable minimum in free-energy landscape”

active-particle glass:
transition depends on full dynamical history

dynamical balance

⇒

6⇒

24 / 36



Active vs. Passive Glass

passive-particle glass:
transition & structure independent on details of dynamics

“metastable minimum in free-energy landscape”

active-particle glass:
transition depends on full dynamical history

dynamical balance

⇒

6⇒

24 / 36



Nonlinear Response TheoryNonlinear Response Theory
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[Brader, ThV, Cates, Fuchs, Phys Rev Lett (2007); Brader et al., Phys Rev Lett (2008)]

Nonlinear Response Theory

aim: calculate arbitrary non-eq. averages of observables

nonequilibrium phase-space density ρ(Γ, t):

∂tρ(Γ, t) = (Ωeq(Γ) + δΩ(Γ, t)) ρ(Γ, t)

formal solution

ρ(t) = ρeq +
∫ t
−∞ dt

′ exp+

[∫ t
t′ Ω(τ) dτ

]
Ω(t′)ρeq

〈f〉(t) = 〈f〉eq +

∫ t

−∞
dt′
〈[

δΩ(t′)ρeq
ρeq

]
exp−

[∫ t
t′ Ω†(τ) dτ

]
f
〉

eq

approximate integral using mode-coupling theory
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[Liluashvili, ThV (in preparation, 2018)]

Nonequilibrium Swim Velocity

coarse-grained swim speed v(ρ): parameter for field theories

v(ρ) = v0

[
1−

∫ ∞

0
dt · · ·

]
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Motility Induced Phase Separation (MIPS) and Glass

Fex =

∫
d~r fex(ρ(~r)) fex(ρ) =

∫ ρ

dρ′ ln

[
v2(ρ′)

2Dr
+Dt

]

6.2. NUMERICAL RESULTS 81
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Phase Separation

Furthermore, the frozen glass phase and the phase separated
region are separated by a homogeneous liquid phase
(see Fig. 2); as activity is increased at constant density above
close packing, the system rst goes through a melting transi-
tion from a frozen solid into a homogeneous uid before
reaching a distinct second transition to a phase separated state
(see Fig. 5).

At very high activity, a weakly interacting limit is reached and
clustering disappears. This crossover, however, is not generic as
it depends on the type of repulsive interaction.

Section 2 introduces our model of self-propelled so disks
and provides a detailed discussion of the connection to thermal
systems and to athermal so sphere packings in the zero-
activity limit. In Section 3 we identify various phases in terms of
the behavior of the mean square displacement and of number
uctuations and describe the phase diagram of the model. We
also discuss the behavior of the cluster size distribution near
phase separation. Section 4 develops a mean-eld theory of
phase separation in the region below close packing, including
predictions for the low-density portion of the spinodal line. We
end the section with a discussion of the freezing and high-
density phase separation transitions and present scaling argu-
ments for the corresponding phase boundaries.

2 Model

We consider a two-dimensional system of N colloidal particles
in an area L � L, modeled as disks.13 The dynamics of the ith
disk is described by the position ri of its center and the orien-
tation qi of a polar axis n̂i ¼ (cos qi, sin qi). The dynamics is
overdamped and is governed by the equations

vtri ¼ v0n̂i þ m
X
jsi

F ij ; (1)

vtqi ¼ hi(t), (2)

with v0 being the single-particle self-propulsion speed and m the
mobility. The angular dynamics is controlled entirely by the
Gaussian white rotational noise hi(t) with zero mean and
correlations hhi(t)hj(t0)i ¼ 2nrdijd(t � t0), where nr is the rotational
diffusion rate. For simplicity, we neglect translational noise in
eqn (1), although its effect is described in the mean-eld model

Fig. 1 Snapshots of the system in various regions of phase space, for ~nr
¼ 5 � 10�4. (a) Homogeneous fluid below close packing at low self-
propulsion speed (~v ¼ 0.001, f ¼ 0.5); (b) phase separated state below
close packing (~v ¼ 0.1, f ¼ 0.5), consisting of a high density liquid
cluster surrounded by a gas of active particles; (c) phase separated
state above close packing (~v ¼ 0.1, f ¼ 0.9), consisting a high density
liquid surrounding a hole filled by a gas of active particles; (d) homo-
geneous liquid above close packing (~v ¼ 0.025, f ¼ 0.9); (e) glassy
phase (~v ¼ 0.005, f ¼ 0.9). Velocities are shown as red arrows, whose
scale is indicated below each plot. See also the Movies 1(a) through
1(e), corresponding to each snapshot, in the ESI.†

Fig. 2 Color map of the exponents a (MSD) and be (number fluctua-
tions) in the (f, ~v) plane for ~nr ¼ 5 � 10�4 showing the three phases of
the system: homogeneous liquid, phase separated, and glassy. The
boundary of the glassy (resp. phase separated) phase is defined as the
set of points where a¼ 0.5 (resp. be¼ 1.5). The dotted line is themean-
field spinodal line given by eqn (10) forD¼ 0 and corresponds to f¼ f1

+ f2/Pe where Pe is the angular Péclet number. f1 ¼ 0.3 and f2 ¼ 2.2
are fitted to match the lower left side of the separated phase boundary
(see Section 4.1). The dashed and dotted-dashed lines are linear fits to
the melting line and lower right side of the separated phase boundary,
respectively (see Section 4.2).

This journal is © The Royal Society of Chemistry 2014 Soft Matter, 2014, 10, 2132–2140 | 2133
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Figure 6.6: Top: phase separation diagram in the (φ,v0/Drσ) plane for ITT-MCT
method at fixed rotational diffusion constantDr = 0.1. Bottom: Simulation results
by Fily et al. [15] for Brownian disks.
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close packing, the system rst goes through a melting transi-
tion from a frozen solid into a homogeneous uid before
reaching a distinct second transition to a phase separated state
(see Fig. 5).
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2 Model

We consider a two-dimensional system of N colloidal particles
in an area L � L, modeled as disks.13 The dynamics of the ith
disk is described by the position ri of its center and the orien-
tation qi of a polar axis n̂i ¼ (cos qi, sin qi). The dynamics is
overdamped and is governed by the equations

vtri ¼ v0n̂i þ m
X
jsi

F ij ; (1)

vtqi ¼ hi(t), (2)

with v0 being the single-particle self-propulsion speed and m the
mobility. The angular dynamics is controlled entirely by the
Gaussian white rotational noise hi(t) with zero mean and
correlations hhi(t)hj(t0)i ¼ 2nrdijd(t � t0), where nr is the rotational
diffusion rate. For simplicity, we neglect translational noise in
eqn (1), although its effect is described in the mean-eld model

Fig. 1 Snapshots of the system in various regions of phase space, for ~nr
¼ 5 � 10�4. (a) Homogeneous fluid below close packing at low self-
propulsion speed (~v ¼ 0.001, f ¼ 0.5); (b) phase separated state below
close packing (~v ¼ 0.1, f ¼ 0.5), consisting of a high density liquid
cluster surrounded by a gas of active particles; (c) phase separated
state above close packing (~v ¼ 0.1, f ¼ 0.9), consisting a high density
liquid surrounding a hole filled by a gas of active particles; (d) homo-
geneous liquid above close packing (~v ¼ 0.025, f ¼ 0.9); (e) glassy
phase (~v ¼ 0.005, f ¼ 0.9). Velocities are shown as red arrows, whose
scale is indicated below each plot. See also the Movies 1(a) through
1(e), corresponding to each snapshot, in the ESI.†

Fig. 2 Color map of the exponents a (MSD) and be (number fluctua-
tions) in the (f, ~v) plane for ~nr ¼ 5 � 10�4 showing the three phases of
the system: homogeneous liquid, phase separated, and glassy. The
boundary of the glassy (resp. phase separated) phase is defined as the
set of points where a¼ 0.5 (resp. be¼ 1.5). The dotted line is themean-
field spinodal line given by eqn (10) forD¼ 0 and corresponds to f¼ f1

+ f2/Pe where Pe is the angular Péclet number. f1 ¼ 0.3 and f2 ¼ 2.2
are fitted to match the lower left side of the separated phase boundary
(see Section 4.1). The dashed and dotted-dashed lines are linear fits to
the melting line and lower right side of the separated phase boundary,
respectively (see Section 4.2).

This journal is © The Royal Society of Chemistry 2014 Soft Matter, 2014, 10, 2132–2140 | 2133
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[Fily et al., Soft Matter (2014)]

microscopic model⇒ input parameters for mesoscopic model

systematic coarse graining possible
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Conclusion

high-density theory for active Brownian particles
competition of length scales `interaction, `swim-persistence

no single “effective temperature”

combine microscopic theory with mesoscopic models
systematic approach to calculate (coarse-grained) transport coefficients

A. Liluashvili, J. Ónody, and Th. Voigtmann,
Physical Review E 96, 062608 (2017)

Deutsche Forschungsgemeinschaft (DFG)
Special Priority Programme “Microswimmers”

John von Neumann Institute for Computing (NIC)
Project HKU26 @ JURECA
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Multi-Scale Fluid Dynamics?Multi-Scale Fluid Dynamics?
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[Papenkort, ThV, J Chem Phys 143, 204502 (2015)]

Multi-Scale Computational Fluid Mechanics

Navier Stokes

microscopic dynamics

collision and
streaming

effective
interaction

constitutive equationconstitutive equation

~c1

~c2

~c3

~c4

~c5~c6

~c7 ~c8

~c0~c0

ni(~r, t)

cluster booster

cluster booster

%
[
∂t~v + (~v · ~∇)~v

]
= −~∇p+ ~∇ · σ

σ(t) =

∫ t

dt′[−∂t′Btt′ ]φ
2(t, t′, [B])

τ0∂tφ(t, t′) + φ(t, t′) +

∫ t

t′
dt′′m(t, t′′, t′)∂t′′φ(t′′, t′) = 0

m(t, t′′, t′) = h(Btt′′)h(Btt′)F [φ(t, t′′)]

t

t′
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2D vs. 3D – Experiments?

experiments on artificial microswimmers: restricted to quasi-2D
(sedimentation!)

does MIPS depend on spatial dimensionality??

⇒ experiments under microgravity conditions

RAMSES – RAndom motion of micro-swimmers Experiment in Space
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Materials Physics on a Sounding Rocket

MAPHEUS – MAterialPHysik. Experimente Unter Schwerelosigkeit

two-stage S31 / improved Malamute aka “Patriot”

max. acceleration 20g, apogee ∼ 250 km

∼ 400 kg payload, ∼ 5 min µg time

start from Esrange (Sweden) 2018-02-17
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Preliminary Data

can observe ABP clustering in 3D

occurs at much lower densities than expected (!?)
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Thank you

Alexander Liluashvili, Jonathan Ónody, Julian Reichert (theory)

Raphael Keßler, Christoph Dreißigacker, Jörg Drescher
(engineering)

Celia Lozano, Clemens Bechinger (experiment; U Konstanz)

Suvendu Mandal (simulation; U Innsbruck)
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