

Active Brownian Particles at High Densities

Thomas Voigtmann

Theory of Soft Matter Group, German Aerospace Cologne / University of Düsseldorf

Jülich, February 2018

Collective Dynamics in Self-Propelled Agents

[Daniel Biber, Wildlife Photography Award 2017]

[Nicholas Hope, http://www.bubblevision.com/]

[Matthew Copeland, U Wisonsin, Madison]

- birds flock, fish school, insects swarm, bacteria move collectively
- emergent phenomena on many length scales
- interaction mechanisms? minimal models for collective behavior?

Collective Dynamics in Biological Tissue

- cell structures show collective rearrangements
- driven by active processes
 - molecular crowding slows down the motion
 - self propulsion speeds up

velocities in wound healing [Nnetu et al., New J Phys (2012)]

Microswimmers: Janus particles

- active-particle systems harvest energy ⇒ directed motion
- model systems for non-equilibrium stat. phys.: Janus-particle colloids in specific solvents

[C. Bechinger lab, U Stuttgart]

Motility-Induced Phase Separation (MIPS)

[Buttinoni et al., Phys Rev Lett (2013)]

- active Brownian particles form dynamic clusters
- non-equilibrium analogue to liquid-gas phase separation (!?)
- mechanism: swim lower at high density (interaction effect)

Active Brownian Particles

Active Brownian Hard Spheres

- hard spheres: spherical steric interactions
- activity: individual drift with random (uncoupled) direction

Active Brownian Particles Brownian Motion

Passive Colloidal Systems: Brownian Motion

[Perrin, Ann Chim Phys VIII (1909)]

scales: $kT \sim 4 \text{ pN nm}$ $a \sim \mu \text{m}$

 $\tau \sim \mathrm{ms}$

- $a \sim 1 \, \mu {
 m m}$ sized particles in suspension
- perpetual agitated, erratic motion
- not connected to "living force"
- Jan Ingenhousz (1785): coal dust
- Robert Brown (1827): pollen
- Jean-Baptiste Perrin Nobel prize (1926)

7 30

collisions with solvent molecules \Rightarrow independent displacements

$$p(\Delta \vec{r}, t) = \frac{1}{(4\pi Dt)^{3/2}} e^{-\Delta \vec{r}^2/4Dt}$$

107 30

collisions with solvent molecules \Rightarrow independent displacements

$$p(\Delta \vec{r}, t) = \frac{1}{(4\pi D t)^{3/2}} e^{-\Delta \vec{r}^{\,2}/4D t}$$

solves diffusion equation – diffusion coefficient ${\cal D}$

$$\partial_t p = D \, \vec{\nabla}^2 p$$

collisions with solvent molecules \Rightarrow independent displacements

$$p(\Delta \vec{r}, t) = \frac{1}{(4\pi Dt)^{3/2}} e^{-\Delta \vec{r}^{\,2}/4Dt}$$

solves diffusion equation – diffusion coefficient ${\cal D}$

$$\partial_t p = D \, \vec{\nabla}^2 p$$

mean-squared displacement (MSD) is diffusive

$$\langle \Delta \vec{r}^2 \rangle = (2d)Dt$$

collisions with solvent molecules \Rightarrow independent displacements

$$p(\Delta \vec{r}, t) = \frac{1}{(4\pi Dt)^{3/2}} e^{-\Delta \vec{r}^2/4Dt}$$

solves diffusion equation – diffusion coefficient D

$$\partial_t p = D \,\vec{\nabla}^2 p$$

mean-squared displacement (MSD) is diffusive

$$\langle \Delta \vec{r}^2 \rangle = (2d)Dt$$

Stokes-Einstein(-Sutherland) relation: consequence of fluctuation-dissipation theorem (FDT)

diffusivity $D \Leftrightarrow \textit{mobility} \; \mu = 1/\zeta$

Smoluchowski Equation

N-particle configuration-space distribution function $p(\Gamma, t)$,

$$\partial_t p + \underline{\nabla} \cdot (\underline{u}p) = 0$$
$$\underline{u} = \underline{\underline{\mu}} \cdot \underline{F} - \underline{\underline{D}} \cdot \underline{\nabla} \ln p$$

Smoluchowski (1905):

$$\partial_t p = \underline{\nabla} \cdot \underline{\underline{D}} \cdot (\underline{\nabla} - \beta \underline{F}) p \qquad \beta = 1/kT$$

N-particle configuration-space distribution function $p(\Gamma, t)$,

$$\partial_t p + \underline{\nabla} \cdot (\underline{u}p) = 0$$
$$\underline{u} = \underline{\underline{\mu}} \cdot \underline{F} - \underline{\underline{D}} \cdot \underline{\nabla} \ln p$$

Smoluchowski (1905):

$$\partial_t p = \underline{\nabla} \cdot \underline{\underline{D}} \cdot (\underline{\nabla} - \beta \underline{\underline{F}}) p \qquad \beta = 1/kT$$

equivalent stochastic differential equation (Langevin):

$$d\vec{r}_j = \mu \vec{F}_j \, dt + \sqrt{2D} d\vec{W}_j$$

N-particle configuration-space distribution function $p(\Gamma, t)$,

$$\partial_t p + \underline{\nabla} \cdot (\underline{u}p) = 0$$
$$\underline{u} = \underline{\underline{\mu}} \cdot \underline{F} - \underline{\underline{D}} \cdot \underline{\nabla} \ln p$$

Smoluchowski (1905):

$$\partial_t p = \underline{\nabla} \cdot \underline{\underline{D}} \cdot (\underline{\nabla} - \beta \underline{F}) p \qquad \beta = 1/kT$$

equivalent stochastic differential equation (Langevin):

$$d\vec{r}_j = \mu \vec{F}_j \, dt + \sqrt{2D} d\vec{W}_j$$

FDT, and $F = -\underline{\nabla}U$ \Rightarrow MSD at most diffusive, $\langle \delta r^2(t) \rangle = o(t)$

Passive High-Density Dynamics: Glass Transition

structural relaxation time $\tau \rightarrow \infty$ "cage effect" – MSD subdiffusive

fluid

dynamical response functions decay to zero glass

response to perturbation never decays Active Brownian Particles Active Motion Brownian motion with "active drift" term along instantaneous orientation $\vec{e}(\varphi) = (\cos \varphi, \sin \varphi)^T$

$$\begin{split} d\vec{r}_j &= \mu \vec{F}_j \, dt + v_0 \vec{e}(\varphi_j) \, dt + \sqrt{2D_t} d\vec{W}_j \,, \qquad D_t = kT/\zeta \,, \\ d\varphi_j &= \sqrt{2D_r} dW_{\varphi,j} \end{split}$$

Smoluchowski equation

$$\begin{split} \partial_t p(\Gamma, t) &= \Omega(\Gamma) \, p(\Gamma, t) \qquad \Gamma \equiv \{ \vec{r}_j, \varphi_j \}_{j=1, \dots N} \\ \Omega &= D_t \sum_j \vec{\nabla}_j \cdot (\vec{\nabla}_j - \beta \vec{F}_j) - v_0 \vec{\nabla}_j \cdot \vec{e} + D_r \partial_{\varphi_j}^2 \equiv \Omega_{\mathsf{eq}} + \delta \Omega \end{split}$$

- short times passive Brownian: $\langle \delta x^2 \rangle \sim D_t t$
- long times active diffusion: $\langle \delta x^2 \rangle \sim D_{\rm eff} t$
- intermediate ballistic motion: $\langle \delta x^2 \rangle \sim v_0^2 t^2$

• short times passive Brownian: $\langle \delta x^2 \rangle \sim D_t t$

- long times active diffusion: $\langle \delta x^2 \rangle \sim D_{\rm eff} t$
- intermediate ballistic motion: $\langle \delta x^2 \rangle \sim v_0^2 t^2$

- short times passive Brownian: $\langle \delta x^2 \rangle \sim D_t t$
- long times active diffusion: $\langle \delta x^2 \rangle \sim D_{\rm eff} t$
- intermediate ballistic motion: $\langle \delta x^2 \rangle \sim v_0^2 t^2$

- short times passive Brownian: $\langle \delta x^2 \rangle \sim D_t t$
- long times active diffusion: $\langle \delta x^2 \rangle \sim D_{\rm eff} t$
- intermediate ballistic motion: $\langle \delta x^2 \rangle \sim v_0^2 t^2$

Low-Density Active Brownian Motion: Experiment

Low-Density Active Brownian Motion: Experiment

[Takatori et al., Nature Commun (2016)] [Takatori, Yan, Brady, Phys Rev Lett (2014)]

- in confinement $L \gg \ell$: effective equilibrium
- "swim pressure"

$$p = \rho \zeta D_{\text{eff}} = \rho k T_{\text{eff}}$$

• "effective temperature" $T_{\rm eff}/T = 1 + v_0^2/2D_r$

low density: activity $\mapsto T_{\rm eff} \sim v_0^2/D_r$

 $\begin{array}{l} \textit{Question:} \\ \textit{still true at high density!} \\ \ell_{\textit{interaction}} \lesssim \ell_{p} \end{array}$

low density: activity $\mapsto T_{\rm eff} \sim v_0^2/D_r$

 $\begin{array}{l} \textit{Question:} \\ \textit{still true at high density?} \\ \ell_{\textit{interaction}} \lesssim \ell_{p} \end{array}$

Answer: NO!

Mode-Coupling Theory of the Glass Transition

transient density correlation function

$$S_{ll'}(\vec{q},t) = \langle \varrho_l(\vec{q}) \exp[\Omega^{\dagger}t] \varrho_{l'}(\vec{q})
angle_{\mathsf{eq}} \quad \varrho_l(\vec{q}) = \sum_j e^{i\vec{q}\cdot\vec{r_j}} e^{il\varphi_j}$$

Mori-Zwanzig formalism, mode-coupling approximation

$$\begin{split} \partial_{t} \boldsymbol{S}(\vec{q},t) + \boldsymbol{\omega}_{T+R}(\vec{q}) \cdot \boldsymbol{S}^{-1}(q) \cdot \boldsymbol{S}(\vec{q},t) + \int_{0}^{t} \boldsymbol{m}(\vec{q},t-t') \cdot \boldsymbol{\omega}_{T}^{-1}(\vec{q}) \cdot \left[\partial_{t'} \boldsymbol{S}(\vec{q},t') + \boldsymbol{\omega}_{R} \cdot \boldsymbol{S}(\vec{q},t')\right] dt' &= \boldsymbol{0} \\ m_{ll'}(\vec{q},t) \approx \frac{1}{2N} \sum_{\vec{p},l_{1}\dots l_{4}} \mathcal{V}_{ll_{1}l_{2}}(\vec{q},\vec{k},\vec{p}) \mathcal{V}_{l'l_{3}l_{4}}^{+}(\vec{q},\vec{k},\vec{p}) \Phi_{l_{1}l_{3}}(\vec{k},t) \Phi_{l_{2}l_{4}}(\vec{p},t) \\ \omega_{T,ll'}(\vec{q}) &= q^{2} D_{t} \delta_{ll'} - \frac{iv_{0}}{2} q e^{i(l-l')\varphi_{q}} S_{ll}(q) \delta_{|l-l'|,1} \qquad \omega_{R,ll'} = l^{2} D_{r} \delta_{ll'} \end{split}$$

Glass Transition

Numerics

M coupled nonlinear integro-differential equations in $t\in[0,T]$, typically $M=10^3, T=10^{6\dots10}$

$$\partial_t f(t) = -a f(t) - \int_0^t m[f(t - t'), f(t - t')] \,\partial_{t'} f(t') \,dt'$$

straightforward discretization in *t*-domain, $f(t) \mapsto f_i \in \mathbb{C}^M$ implicit equation for each time step (solved by $O(10^{0...5})$ iterations)

$$\boldsymbol{A} \cdot f_i = \boldsymbol{B} \cdot m[f_i, f_i] + \boldsymbol{C}_i$$

most time spent on evaluating m[f,f]

multi-grid decimation: $f_{2i}^{(h)} \mapsto f_i^{(2h)}$ (better for integrals)

Slow Relaxation in Active Brownian Particle Systems

- increasing activity melts the glass
- high density causes structural arrest
- \Rightarrow active glass state possible

Glass Transition of Active Brownian Disks

- activity softens, then melts the glass
- qualitative agreement with simulations of 3D ABP

Glass Transition of Active Brownian Disks

activity softens, then melts the glass

qualitative agreement with simulations of 3D ABP

Glass Transition of Active Brownian Disks

[Mandal et al., Soft Matter (2016)]

- activity softens, then melts the glass
- qualitative agreement with simulations of 3D ABP

physics: cage effect + fluidization by activity

[Liluashvili, Ónody, ThV, Phys Rev E 96, 062608 (2017)]

Rotational Diffusion changes Glass Transition

[Bi et al., PRX (2016)]

• iso-kinetic lines not functions of single $T_{
m eff} \sim v_0^2/D_r$

lacksim competition of length scales: $\ell_p = v_0/D_r$ and cage size $\ell_c pprox 0.1a$

Rotational Diffusion changes Glass Transition

[Bi et al., PRX (2016)]

- ${\ensuremath{\bullet}}$ iso-kinetic lines not functions of single $T_{\rm eff} \sim v_0^2/D_r$
- competition of length scales: $\ell_p = v_0/D_r$ and cage size $\ell_c pprox 0.1a$

passive-particle glass: transition & structure independent on details of dynamics "metastable minimum in free-energy landscape" passive-particle glass:

transition & structure *independent* on details of dynamics "metastable minimum in free-energy landscape"

> active-particle glass: transition depends on full dynamical history dynamical balance

Nonlinear Response Theory

aim: calculate arbitrary non-eq. averages of observables

nonequilibrium phase-space density $\rho(\Gamma, t)$:

 $\partial_t \rho(\Gamma, t) = \left(\Omega_{\mathsf{eq}}(\Gamma) + \delta \Omega(\Gamma, t)\right) \rho(\Gamma, t)$

aim: calculate arbitrary non-eq. averages of observables

nonequilibrium phase-space density $\rho(\Gamma, t)$:

$$\partial_t \rho(\Gamma,t) = \left(\Omega_{\rm eq}(\Gamma) + \delta \Omega(\Gamma,t)\right) \rho(\Gamma,t)$$

formal solution

$$\rho(t) = \rho_{\rm eq} + \int_{-\infty}^{t} dt' \exp_{+} \left[\int_{t'}^{t} \Omega(\tau) \, d\tau \right] \Omega(t') \rho_{\rm eq}$$

aim: calculate arbitrary non-eq. averages of observables

nonequilibrium phase-space density $\rho(\Gamma, t)$:

$$\partial_t \rho(\Gamma,t) = \left(\Omega_{\rm eq}(\Gamma) + \delta \Omega(\Gamma,t)\right) \rho(\Gamma,t)$$

formal solution

$$\rho(t) = \rho_{\rm eq} + \int_{-\infty}^{t} dt' \exp_{+} \left[\int_{t'}^{t} \Omega(\tau) \, d\tau \right] \Omega(t') \rho_{\rm eq}$$

$$\langle f \rangle(t) = \langle f \rangle_{\rm eq} + \int_{-\infty}^{t} dt' \left\langle \left[\frac{\delta \Omega(t') \rho_{\rm eq}}{\rho_{\rm eq}} \right] \exp_{-} \left[\int_{t'}^{t} \Omega^{\dagger}(\tau) \, d\tau \right] f \right\rangle_{\rm eq}$$

approximate integral using mode-coupling theory

[Brader, ThV, Cates, Fuchs, Phys Rev Lett (2007); Brader et al., Phys Rev Lett (2008)]

Nonequilibrium Swim Velocity

coarse-grained swim speed $v(\rho)$: parameter for field theories

$$v(\rho) = v_0 \left[1 - \int_0^\infty dt \, \cdots \right]$$

- density dependent $v(\rho)$ from fixed v_0 per particle
- increasing v_0 , shape of $v(\rho)$ changes

Motility Induced Phase Separation (MIPS) and Glass

$$\mathcal{F}_{\mathsf{ex}} = \int d\vec{r} f_{\mathsf{ex}}(\rho(\vec{r})) \qquad f_{\mathsf{ex}}(\rho) = \int^{\rho} d\rho' \ln\left[\frac{v^2(\rho')}{2D_r} + D_t\right]$$

• microscopic model \Rightarrow input parameters for mesoscopic model

systematic coarse graining possible

Conclusion and Outlook

Conclusion

high-density theory for active Brownian particles

- competition of length scales $\ell_{interaction}$, $\ell_{swim-persistence}$
- no single "effective temperature"
- combine microscopic theory with mesoscopic models
 - systematic approach to calculate (coarse-grained) transport coefficients

A. Liluashvili, J. Ónody, and Th. Voigtmann, Physical Review E **96**, 062608 (2017)

Deutsche Forschungsgemeinschaft (DFG) Special Priority Programme "Microswimmers"

John von Neumann Institute for Computing (NIC) Project HKU26 @ JURECA

Multi-Scale Fluid Dynamics?

Multi-Scale Computational Fluid Mechanics

Multi-Scale Computational Fluid Mechanics

- experiments on artificial microswimmers: restricted to quasi-2D (sedimentation!)
- does MIPS depend on spatial dimensionality??
- ⇒ experiments under microgravity conditions

RAMSES – RAndom motion of micro-swimmers Experiment in Space

Materials Physics on a Sounding Rocket

MAPHEUS – MAterialPHysik. Experimente Unter Schwerelosigkeit

- two-stage S31 / improved Malamute aka "Patriot"
- max. acceleration 20g, apogee $\sim 250~{
 m km}$
- $\sim 400 \ \rm kg$ payload, $\sim 5 \ \rm min \ \mu g$ time
- start from Esrange (Sweden) 2018-02-17

Materials Physics on a Sounding Rocket

Preliminary Data

- can observe ABP clustering in 3D
- occurs at much lower densities than expected (!?)

Thank you

- Alexander Liluashvili, Jonathan Ónody, Julian Reichert (theory)
- Raphael Keßler, Christoph Dreißigacker, Jörg Drescher (engineering)

- Celia Lozano, Clemens Bechinger (experiment; U Konstanz)
- Suvendu Mandal (simulation; U Innsbruck)