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Abstract

A drastic reduction of CO, is urgently needed to fight climate change and enable a sustainable growth. The electrochemical
reduction of CO, (CO2RR) is a promising approach to generate chemical energy carriers from renewable electricity!*. Transition
metal carbides (TMCs) are a promising non-noble material class, with e.g. Mo,C recently reported to convert CO, into CH, at low
potentials of ~0.55 V2. Understanding the surface structure and composition of TMCs under working conditions in the aqueous
electrolyte is a prerequisite for ensuing CO2RR mechanistic studies. We therefore conduct ab initio thermodynamic calculations to
investigate the atomic structure of Mo,C/aqueous interfaces as a function of potential and pH. The phase transition conditions from
the oxidized state to the reduced state at the surface are precisely predicted from a theoretical perspective.

TMCs in aqueous electrolyte
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3 orientations at oxide/carbide interfaces 1 or 2 oxide layer(s)
5 surface coverages for *O and/or *OH (OML, 1/4ML, ..., 1ML)
315 structures for each Mo carbide phase

Ab Initio Thermodynamics Approach

Gibbs free energies: Density functional theory (DFT)
Quantum Espresso + Environf!
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Surface Pourbaix Diagram
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Conclusion

1. With decreasing bias and decreasing pH, the surface
changes from an oxidized state to a reduced state.

2. The reduction conditions of the oxide overlayer can be
precisely predicted to correspond with the experiments.
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