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We develop Hybrid Monte Carlo (HMC) algorithms for constrained Hamiltonian systems of gauge-Higgs models on the lattice and introduce a new observable for the
constraint effective Higgs potential. We verify our results by comparing to the one-loop Higgs potential of the 4D Abelian-Higgs model in unitary gauge and find good
agreement. We calculate constraint potentials in 5D Gauge-Higgs Unification models where the Higgs field is identified with the Polyakov loop in the extra dimension. To our
knowledge, this is the first time this problem has been addressed for theories with gauge fields. The algorithm can also be used in four dimensions to study finite temperature
and density transitions via effective Polyakov loop actions.
This poster is based on [1].
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Motivation: The Higgs Mechanism & Potential
In the Standard Model (SM) of particle physics, the Brout-Englert-Higgs (BEH) mech-
anism [2,3] explains the generation of the mass of gauge bosons in gauge theories
coupled to a scalar field called the Higgs field.

• the Higgs field H breaks electroweak symmetry, allowing massive weak force
bosons (W and Z), while the the electromagnetic boson (photon) is still massless

• the Higgs field has a non-zero vacuum expectation value ν (vev), caused by
The Higgs (’Mexican Hat’) Potential:

• SM: Veff(H) = −µ2HH† + λ(HH†)2

• µ2 and λ are the well-known Higgs mass
and Higgs self-coupling parameters

• µ2 > 0 and λ > 0 for Spontaneous Sym-
metry Breaking (↔ non-trivial minimum)

• origin of the potential responsible for the
Higgs mechanism is still unknown

• we test non-perturbatively 5D Gauge-Higgs
Unification which generates Veff(H)

gauge-Higgs models & constraint effective potential
5D SU(2) orbifold model [4,5] reduces on boundaries...

SorbW = β4

2
∑
µ,ν

w · tr{1− Uµν} + β5

2
∑
µ

tr{1− Uµ5}

...to 4D Abelian-Higgs model with charge q = 2

Sρ[ρ, V ] =
∑
x

{
ρ(x)2 + λ(ρ(x)2 − 1)2

− 2κρ(x)Re
∑
µ

ρ(x + aµ̂)[Vµ(x)]q
}

H [ρ, V,Φ] = Sρ+ln(ρ)+
∑

x π(x)2+µ( 1
Ω
∑

x ρ(x)−Φ)

constraint effective potential UΩ [6,7]

e−ΩUΩ(Φ) =
∫
DρDV δ

(
1
Ω
∑
x

ρ(x)− Φ
)
e−S

∝
∫
DρDVDπe−H [ρ,V,Φ] ⇒ d/dΦ

U ′Ω(Φ) = −1/Ω〈µ〉Φ, µ = −H ′ =
∑

x 1/ρ− dS/dρ
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Constrained HMC (Rattle) algorithm
We consider mechanical systems with coordinates q that are subject to constraints
g(q) = 0, and corresponding momenta p. The equations of motion are then given by

ṗ = −∇qH(p, q)−∇qg(q)λ, q̇ = ∇pH(p, q), 0 = g(q)

where the Hamiltonian H(p, q) = 1
2p
TM−1p + U(q) with a positive definite mass

matrix M and a potential U(q). Time-derivative of g(q) gives the so-called hidden
constraint 0 = ∇qg(q)T∇pH(p, q), which is an invariant of the EOMs. We choose a
step size h and discretized integration time tn = t0 + nh. For initial values (pn, qn) ∈
M, i.e., consistent with the contraints, the Rattle method [8] yields an approximation
(pn+1, qn+1) which is again on the solution manifoldM:

pn+1/2 = pn + h

2

(
∇qU(qn) +∇qg(qn)λ(1)

n

)
qn+1 = qn + hM−1pn+1/2,

0 = g(qn+1),

pn+1 = pn+1/2 + h

2

(
∇qU(qn+1),+∇qg(qn+1)λ(2)

n

)
0 = ∇qg(qn+1)TM−1pn+1

The first three equations determine (pn+1/2, qn+1, λ
(1)
n ), the other two give (pn+1, λ

(2)
n ).

The plot shows individual Polyakov lines fluctuating around their constraint average.

1-loop Abelian-Higgs potential in unitary gauge
comparison in weak coupling regime β = 8, κ = 0.166 and λ = 0.15

finite, one-loop Higgs potential [9] (λ̃ = 4λ)

V1(φ) = 1
2
m2
Hφ

2 + φ4

4

[
λ̃− 1

16π2

(
32λ̃2m4

Z

m4
H

)]

+

√λ̃

2
mH −

mH

16π2
√

2λ̃

(
9λ̃2 + 8λ̃2m4

Z

m4
H

)φ3

fit U ′1loop(Φ) = V ′1(Φ− Φ0) to U ′Ω(Φ) via mH
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no precision loss with volume, extended range w.r.t. histogram method
without unitary gauge ⇒ composite Higgs field H(x) = φ†(x)φ(x) ⇒ Rattle

5D SU(2) orbifold Gauge-Higgs Unification (GHU)
Implement a constraint condition for the SU(2) link variables U5, to fix the average
Polyakov loop in the fifth dimension, which represents the Higgs field to a value Φ.
The constrained HMC (Rattle) algorithm can be formulated in the following way

πn+1/2 = πn −
h

2

(
∂S

∂Un
− λ

(1)
n

8Ω
tr[...σiUn...− ...U †nσi...]σi

)
Un+1 = ehπn+1/2Un, U †n+1 = U †ne

−hπn+1/2

0 = 1
2Ω
∑
nµ

tr
N5−1∏
n5=0

[Un+1(nµ, n5)]σ3

0∏
n5=N5−1

[U †n+1(nµ, n5)]σ3 − Φ

πn+1 = πn+1/2 −
h

2

(
∂S

∂Un+1
− λ

(2)
n

8Ω
tr[...σiUn+1...− ...U †n+1σi...]σi

)
0 = 1

8Ω
∑
nµ,n5

tr{tr[...σiUn+1(nµ, n5)...− ...U †n+1(nµ, n5)σi...]σiπn+1(nµ, n5)}

The first three lines determine (πn+1/2, Un+1, λ
(1)
n ), whereas the remaining two give

(πn+1, λ
(2)
n ). We truncate the exponentials in line 2 at O(h3) to solve for an approxi-

mate λ(1)
n and use a Secant method to get the precise Lagrange multiplier by solving

the constraint condition given in line 3. The initial random momenta π0 have to com-
ply with the hidden constraint in line 5, which we achieve via orthogonal projection.

Conclusions & Outlook
The plot shows U ′Ω,cnst. = −〈λ(1)

n 〉Φ/Ω for
the symmetric point β4 = β5 = 1.66 on a
Ω = 84, N5 = 4 lattice, together with its
integral UΩ,int. and results from the his-
togram method for the orbifold model.
Conclusions

• new symplectic constrained HMC al-
gorithms for 4D Abelian-Higgs and
5D SU(2) GHU models

• new, very precise method to compute
constraint effective potentials

Outlook
• study dimensional reduction of 5D
GHU models: 5D torus/orbifold →
4D adjoint/Abelian-Higgs

• other applications: (constraint) ef-
fective Polyakov loop action for finite
temperature/density QCD [10]
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