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Introduction
Quantum annealing is a quantum version of classical simulated 

annealing, but using quantum fluctuations instead of thermal 

fluctuations, to explore the energy landscape of an optimization 

problem. This approach has received enormous interest in the 

last two decades, and is regarded as a second model of 

quantum computing [1], which is quite distinct to the gate-based 

model.

The standard form of quantum annealer, such as the one that D-

Wave Systems Inc. uses, can be described by a transverse-field 

Ising model. This type of quantum annealer is designed for 

solving quadratic unconstrained binary optimization problems. 

While researches on the universality and hypothetical quantum 

speed up for this type of quantum annealer are still ongoing, 

here we investigate two different variations of qantum annealer, 

namely, adding anneal path control and catalyst Hamiltonian to 
the standard form, respectively. 

Standard form
The Hamiltonian of the quantum annealing can be written as a time-dependent 

linear combination of an initial Hamiltonian 𝐻𝐼 and a final Hamiltonian 𝐻𝑃

encoding the problem to be solved:
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where 𝑡𝑎 denotes the total annealing time,𝜎𝑖
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are Pauli matrices. During the 

annealing process, 𝐴(𝑡/𝑡𝑎) starts from 1 and slowly decreases to 0, and 𝐵(𝑡/𝑡𝑎) starts 
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Adding anneal path control
The anneal path control is implemented by modifying the 𝐴
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for 

each qubit 𝑖 [2], resulting in the Hamiltonian:
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Adding catalyst Hamiltonian
A third term, called catalyst Hamiltonian 𝐻𝐶, is added into the standard form, 

which disappears at both the beginning and end of the annealing process, i.e., 
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Two types of Hamiltonian are considered [3], which are given by
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Method
The whole system evolves according to the time-dependent Schrödinger 

equation (TDSE),
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For small systems, the TDSE can be solved by exact diagonalization of the Hamiltonian. 
For large systems, we use the second-order Suzuki-Trotter product formula to 
approximate the time-evolution of the TDSE.
The spectrum of the system is solved by exact diagonalization for small systems and 
Lanczos method for large systems.

The considered optimization problems are 2-SAT problems with 12 Boolean variables 
with a known unique ground state and a highly degenerate first excited state. More 
information about the chosen problem can be found in Ref. [4].

Simulation results for adding anneal path control
We solved the TDSE for the standard form with linear annealing scheme and with a 
scheme allowing control for individual qubit, respectively, for a given 2-SAT problem. 
Some of the results are shown in Fig. 1.

The average energy obtained from the standard form follows the ground state energy 
up to the critial point, then makes a Landau-Zener transition to end up close to the 
energy of the first excited state of the problem. The control/offset parameters used 
where anneal path control are applied are obtained according to certain iterative 
method which depends on the probability of floppiness [5]. From the results, it is clearly 
seen that by adding the anneal path control, the minimum gap is largely increased, and 
the average energy of the system is nicely following the ground state energy for the 
whole spetrum for certain choices of the control parameters (see Fig. 1 (c)).

Fig. 1: Energy spectrum for 2-SAT problem 487 for a linear annealing scheme (a), and annealing process with anneal path control 
(b, c). The squares denote the average energy of the system during the annealing process. The annealing time 𝑡𝑎 = 5𝑛𝑠.
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Simulation results for adding catalyst Hamiltonian
We obtained the spectra for the standard form without and with a catalyst Hamiltonian, 
respectively, for given 2-SAT problems. Linear annealing scheme is used. 
Some of the results are shown in Fig. 2.

It is seen that adding ferromagnetic catalyst term increases the minimum gap for all the 
cases, while adding antiferromagnetic term decreases the minimum gaps for almost all 
of the cases for 𝑔 = 0.5,  increases the minimum gaps for some cases for 𝑔 = 1.0 and 
2.0. This leads to interesting physical dynamics of the state of the system as a function of 
the annealing time, for solving the optimization problems [6].

Summary
Adding anneal path control to quantum annealing is a practical method for enhancing the 
performance of the annealing method for systems for which perturbative anticrossings 
dominate the slow-down mechanism of quantum annealing [5]. The performance upon 
adding extra catalyst term to quantum annealing largely depends on the type of catalyst. 
For ferromagnetic catalyst Hamiltonian, we observed that the minimum gaps are opened 
up for all the cases we studied, and therefore the performance is enhanced. For 
antiferromagnetic term, the minimum gaps are mostly reduced for small coupling strength 
𝑔 = 0.5; the number of anti-crossings is increased for large 𝑔 = 1.0, and 2.0, which for 
certain cases might enhance the performance greatly [6].
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Fig. 2: Scatter plot of the minimum gap during the annealing process obtained from the standard form and the form with 
ferromagnetic (a) and antiferromagnetic (b) catalyst term.
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