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Motivation

Lithium titanium oxide(LTO) is an intriguing anode material promising particularly long lived batteries, due to its remarkable phase stability during
(dis)charging of the cell. However, its usage is limited by its low intrinsic electronic conductivity. Introducing oxygen vacancies can be one method to
overcome this drawback, possibly by altering the charge carrier transport mechanism. Getting detailed insight in its defect chemistry is a non trivial task
which needs to be tackled by theory and experiment. Here, we present extensive theoretical two component density functional theory (TCDFT)
calculations in order to interpret positron annihilation measurements used to reveal defect influences on Li mobility. In addition we used Hubbard
corrected DFT (DFT+U) calculations to gauge electron mobility to shed a light on the experimentally observed increase in electronic conductivity. By
explicitly calculating hopping barrier heights our simulations indeed show that a polaron hopping mechanism can be the source for the increased
electronic conductivity.

Experimental and Theoretical background: Application to LTO

How to produce defects in LTO? Positron annihilation spectroscopy
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DFT computation of positron lifetimes

Sintering of pristine, white LTO (left) under reducing

conditions yields a blue defect rich material (right) with — 1= 7T7”o j drn, (r)n_ (r)g(n+ (r)n_ (r)) from self consistent solutions
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DFT calculated lifetimes (left) and corresponding self-consistent positron densities in LTO. The bulk structures
(c1-c6) correspond to the six possible mixed Li/Ti occupancies in the primitive Li4Ti_O., spinel unit cell. Positron
lifetimes in these structures are given by blue circles and vary around 172 ps only within the experimental accuracy
(blue box). Into these base structures, oxygen (red squares) and Li,O (yellow triangles) defects are introduced,
resulting in distributions of longer positrons lifetimes in general agreement with the experimental surface
observations. Computations covering large surface defects with lifetimes >350 ps have not yet been performed.
Further structural sampling of defect structures is underway.

Experimental CDBS S-parameter scans as function of
incident positron energy. Energies in the range of 1-5 keV
correspond to surface and 18-20 keV to bulk defects. LTO
samples with varying reductive treatment (annealing time)
differ most in the surface defect distribution.

Experimental PLEPS positron lifetimes for white and blue LTO as a function of
incident positron energy. Each measurement contains two dominant lifetime
contributions with probability represented by the pie charts. The surface lifetimes
are consistently longer, indicating generally larger defect volumes. The
significance of the short bulk lifetime (r; = 84 ps) in reduced, blue LTO is still
unclear.

Polaron Hopping in LTO
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Hopping barrier height: 186 meV indicates
polaron hopping already at room temperature
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during hopping. Indeed, this indicates a small polaron
hopping mechanism.




