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Abstract
We investigate the rheology of strain-hardening spherical capsules, from the dilute to the 
concentrated regime under a confined shear flow using three-dimensional numerical simulations 
based on the lattice Boltzmann method (LBM) coupled with a finite element method (FEM) for 
the particles through the immersed boundary method (IBM). We consider the effect of capillary 
number (𝐶𝑎), volume fraction (𝜙) and membrane inextensibility (𝐶) on the particle deformation 
and on the effective viscosity of the suspension. 
The suspension of capsules exhibits a shear-thinning character that becomes more pronounced 
as the volume fraction increases. The mean deformation and the relative viscosity of the capsules 
show a universal behavior when considering the subtle interplay between the 𝐶𝑎 , 𝜙, and 𝐶.
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𝐿 = 16𝑟

Ca

𝐷 =
𝑟1 − 𝑟3
𝑟1 + 𝑟3

• Taylor deformation index:

• Capillary number:

𝐶𝑎 =
𝜇0𝑟 ሶ𝛾

𝐺𝑠

Simulation setup

• Two planar walls in the z-axis.
• Biperiodic along x- and y-axis. 
• Shear flow: Zou & He B.C.

• Particles: triangular mesh w/ 1280
faces and 642 nodes.

• Membrane model: Skalak
hyperelastic law.

Relevant parameters:
• 𝐶 ∈ [10−3; 7.5 × 103]

• ϕ ∈ [10−3, 0.5]
• 𝐶𝑎 ∈ [0.1,1]
• 𝑅𝑒 < 0.03

Deformation of Skalak capsules in a shear flow

We then introduce an effective capillary 
number reading as:

𝐶 = 150

𝜙 = 0.001

• Membrane inextensibility:

𝐶 =
𝐺𝐴
𝐺𝑠

➢ 𝐷 depends on both 𝐶 and 𝐶𝑎, and the dependency on 𝐶𝑎 gets 
weaker as C increases.

Figure 2: Deformation of a suspension of 
capsules as function of the shear rate.

Figure 1: Schematic of the simulation setup depicting 
a suspension at 𝜙 = 0.5.  

Figure 3: (a) Deformation of a single  capsule as function of the C for different 𝐶𝑎. (b) Selected 
steady-state shape of the deformed capsule.

Based on the knowledge gained from the interplay between 𝐶, 𝐶𝑎 , and 𝜙 on 𝐷 ,
we consider the following assumptions on the mean deformation of the particles:

• 𝐷 shows linearity in 𝜙.
• 𝐷 is constant (with 𝐶𝑎) intrinsic viscosity [𝜇] ≈ 2.8 (equal to its large C limit).
• Extra-tension on the membrane surface accounting for non-zero C.

𝜇0 → 𝜇𝑒𝑓𝑓 = 𝜇0(1 + [𝜇]𝜙)

𝐺𝑠 → 𝐺𝑠
(𝑒𝑓𝑓)

= 𝐺𝑠(1 + 𝛼𝐶)

𝐶𝑎𝑒𝑓𝑓 𝜙, 𝐶 =
𝜇𝑒𝑓𝑓 ሶ𝛾𝑟

𝐺𝑠
𝑒𝑓𝑓

≡
1 + 𝜇 𝜙

(1 + 𝛼𝐶)
𝐶𝑎

When plotted as function of 𝐶𝑎𝑒𝑓𝑓, the values of 

𝐷 for different 𝜙 and C collapse onto a single 
master curve. Such curve can be fitted using:

𝐷 ≡ 𝔇 𝐶𝑎 , 𝜙, 𝐶 = 𝐴𝑔(
𝐶𝑎

𝐶𝑎
∗(𝜙,𝐶)

);    with 𝐶𝑎
∗ ∝

𝐺𝑆
𝑒𝑓𝑓

(𝐶)

𝜇𝑒𝑓𝑓(𝜙)
and 𝑔 𝑥 = 𝑥0.3(1 − 𝑒−𝑥

0.7
)

Suspension rheology in a shear flow

𝐶 = 150

Figure 7: Relative viscosity as function of the 
effective volume fraction.

Figure 5: Stead-state configuration of a suspension of capsules for 𝜙 = 0.5, 𝐶𝑎 = 1. 
Left: C = 150. Right: C = 7500. The initial configuration for both simulations is 
depicted in  Fig. 1. 

We scan the parameter space (𝐶𝑎 , 𝐶, 𝜙) within the ranges 𝐶𝑎 ∈ 0.1, 1 , 𝐶 ∈ [10−3, 7.5 ×
103] and 𝜙 ∈ 10−3, 0.5 to determine the rheological behaviour of the suspension by 
measuring the relative viscosity which is defined as:

𝜇𝑟 = 1 + ൘Σ𝑥𝑧
𝑝

𝜇0 ሶ𝛾
Examples of steady-state configurations of the suspension are shown in Fig. 5.

Relative viscosity:

➢The growth of 𝜇𝑟 is approximately linear 
for 𝜙 ≲ 0.1 and then become steeper

➢Shear-thinning behaviour: 𝜇𝑟 tends to 
decrease with 𝐶𝑎

➢Shear-thinning behaviour enhanced as 𝜙
increases

z

x

Figure 4: Deformation parameter as 
function of the effective capillary number.

For a better understanding of the interplay between 𝐶𝑎 and 𝐶, we focus here on 
the deformation of a single capsule.

We start by fixing C and investigating the deformation of a suspension of capsules 
as function of both the volume fraction and capillary number.

➢ 𝐷 increases linearly with 𝜙 for a fixed 𝐶𝑎.

Our assumptions lead to:

𝐶 = 150

𝐶 = 150

Our aim is to find a universal behaviour of the relative viscosity across the various 
shears, as we did previously for the mean deformation of the particles. 

Since 𝜙 is calculated based on the undeformed shape of the capsules, we start by introducing 
an effective volume fraction based on the results from the study of the mean deformation of 
the particles.

Figure 6: Relative viscosity as function the volume fraction.

𝜇𝑟 = 1 + 𝐵𝜙𝑒𝑓𝑓/(1 − 𝜙𝑒𝑓𝑓/𝜙𝑚 )
2

This effective volume fraction can be expressed as

𝜙𝑒𝑓𝑓 =
1 − 𝑏 𝐷

1 + 𝑏 𝐷
𝜙,

where 𝑏 is a parameter related to the shape of the 
particles. For ellipsoidal particles, we find 𝑏 = 0.5.

When plotting 𝜇𝑟 as function of 𝜙𝑒𝑓𝑓, we observe 

a nice overlap of all the data sets onto a single 
master curve that can be well fitted with an Eilers
function reading as:
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