First-principles study of In_2S_3 as alternative buffer material for Cu(In,Ga)(Se,S)₂ thin-film solar cells

Elaheh Ghorbani and Karsten Albe

Technische Universität Darmstadt Fachbereich Material-und Geowissenschaften Fachgebiet Materialmodellierung Darmstadt, Germany

Funded by BMWI-Project "Effcis"

Different types of solar cells

CIGS-Modules

Monolithic CIGS on a flexible substrate, installed in Singapore.

Flexible CIGS modules are lightweight and can be incorporated onto vehicle roofs and structures for which heavy PV modules are unsuitable.

efficient stable beautiful flexible

Annual global production of CIGS Modules

Annual global production: CIGS thin film modules

Role of buffer layer

- To form a junction with the absorber layer
- To admit a maximum amount of light to the junction region and absorber layer
- To drive out the photogenerated carries with minimum recombination losses to the outer circuit

In₂S₃ as buffer material

Why substituting CdS buffer layer?

- To avoid toxic metal-containing waste
- To avoid break in the production rate (chemical bath deposition technique)
- To increase QE in blue light region
- To reach higher efficiencies

Why In_xS_v as replacement?

- Enviromentally friendly
- It is compatible with various deposition methods
- Wider band gap when containing O, S or Na

Density Functional Theory (DFT)

P. Hohenberg and W. Kohn, Phys. Rev. B, **136**, B864-B871 (1964).W. Kohn, L.J. Sham, Phys. Rev. **140**, 1133 (1965).

Calculated parameters for β-In₂S₃

	a (Å)	c/a	E _g (eV)	B (GPa)
This work	7.71	4.29	2.13	141
Exp.	7.62 ¹	4.26 ¹	2.1 - 2.4 ^{2,3}	148 ⁴

¹ Rampersadh et al., *Physica B* (2004)

² Sterner et al., *Prog. Photovolt.: Res. Appl.* **13** (2005)

³ Kitaiev et al., Neorg. Mater. 12 (1976)

⁴ Amlouk et al., Jpn. J. Appl. Phys. **38** (1999)

CIGS/In₂S₃ interface: Literature review

Phys. Status Solidi A 206, No. 5, 1059-1062 (2009) / DOI 10.1002/pssa.200881162

Cu in In_2S_3 : interdiffusion phenomena analysed by high kinetic energy X-ray photoelectron spectroscopy

P. Pistor^{*,1}, N. Allsop¹, W. Braun², R. Caballero¹, C. Camus¹, Ch.-H. Fischer^{1,3}, M. Gorgoi², A. Grimm¹, B. Johnson¹, T. Kropp¹, I. Lauermann¹, S. Lehmann¹, H. Mönig³, S. Schorr¹, A. Weber¹, and R. Klenk¹

¹ Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), Glienicker Straße 100, 14109 Berlin, Germany

² Berliner Elektronenspeicherring-Gesellschaft für Synchrotronstrahlung m.b.H., Albert-Einstein-Str. 15, 12489 Berlin, Germany

³ Freie Universität Berlin, Fachbereich Physik, Arnimallee 14, 14195 Berlin, Germany

Received 30 August 2008, accepted 6 November 2008 Published online 3 March 2009

Progress in PHOTOVOLTAICS

> PROGRESS IN PHOTOVOLTAICS: RESEARCH AND APPLICATIONS Prog. Photovolt: Res. Appl. 2015; 23:705–716 Published online 11 March 2014 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/pip.2484

RESEARCH ARTICLE

Interface engineering and characterization at the atomic-scale of pure and mixed ion layer gas reaction buffer layers in chalcopyrite thin-film solar cells

Oana Cojocaru-Mirédin¹*, Yanpeng Fu², Aleksander Kostka¹, Rodrigo Sáez-Araoz², Andreas Beyer³, Nikolai Knaub³, Kerstin Volz³, Christian-Herbert Fischer² and Dierk Raabe¹

¹ Max-Planck-Institut für Eisenforschung, Max-Planck-Str. 1, 40237 Düsseldorf, Germany

² Helmholtz-Zentrum Berlin für Materialien und Energie, Institute of Heterogeneous Materials Systems, Hahn-Meitner-Platz 1, D-14109 Berlin, Germany

³ Philipps-Universität Marburg, Hans-Meerwein-Straße, D-35032 Marburg, Germany

Thermodynamic modelling

Defect formation energy	$\Delta H = \Delta H_{D,q} (\boldsymbol{\mu}, \boldsymbol{E}_{\mathbf{F}})$
Defect concentration	$c_{D} pprox \textit{N}_{site} imes \texttt{exp}(-\Delta \textit{H/kT})$
Electron/hole density	$c_{e} = \int f_{FD}(E - E_{F}) g(E) dE$
Charge neutrality	$-c_e + c_h + \Sigma [q \cdot c(D^q)] = 0$
Self-consistent solution	$\Delta H(\boldsymbol{E}_{F}) \longrightarrow c_{D}(\Delta H) \longrightarrow \boldsymbol{E}_{F}$
pO_2 dependence of μ_O	$\Delta \mu_{O}(\boldsymbol{T},\boldsymbol{P}_{0}) = \frac{1}{2} [H_{0} + \Delta H(\boldsymbol{T})] - \frac{1}{2} \boldsymbol{T} \cdot [S_{0} + \Delta S(\boldsymbol{T})]$
(ideal gas)	$\Delta \mu_{O}(T, \mathbf{P}) = \Delta \mu_{O}(T, \mathbf{P}_{0}) + \frac{1}{2} k T \ln(\mathbf{P}/\mathbf{P}_{0})$

High conc.	Account for competition of defects and host atoms for $N_{\rm site}$
	Association/dissociation of <i>defect-clusters</i> (law of mass action)
Direct	Given $\Delta H(\mu)$, find concentrations c_{D}
Inverse	Given a target concentration, find ΔH (i.e., find μ)

Na and Cu in β -In₂S₃

Ghorbani and Albe, J. Mater. Chem. C 6 (2018)

Na and Cu in β -In₂S₃

Is there a driving force for the transfer of Na and Cu into In_2S_3 :

Driving force = $E_{tot}(CIS: V_{Cu}) - E_{tot}(CIS: Na_{Cu}) + E_{tot}(In_2S_3: Na_i) - E_{tot}(In_2S_3: pure)$

Driving force = $E_{tot}(CIS: V_{Cu}) - E_{tot}(CIS: pure) + E_{tot}(In_2S_3: Cu_i) - E_{tot}(In_2S_3: pure)$

Ghorbani and Albe, J. Mater. Chem. C 6 (2018)

Na and Cu in β -In₂S₃

Is there a driving force for the transfer of Na and Cu into In_2S_3 :

Driving force = $E_{tot}(CIS: V_{Cu}) - E_{tot}(CIS: Na_{Cu}) + E_{tot}(In_2S_3: Na_i) - E_{tot}(In_2S_3: pure)$

Driving force = $E_{tot}(CIS: V_{Cu}) - E_{tot}(CIS: pure) + E_{tot}(In_2S_3: Cu_i) - E_{tot}(In_2S_3: pure)$

Ghorbani and Albe, J. Mater. Chem. C 6 (2018)

Absorber/buffer interface

- A moderate spike-like offset (0.0-0.3 eV) suppresses charge recombination.
- A cliff-like offset triggers recombination and reduces the interface band gap.
- Cliff-like conduction band offset must be avoided.

Band alignment between ternary absorber compounds and In₂S₃

Ghorbani, Erhart and Albe, Phys. Rev. Materials 3 (2019)

TECHNISCHE UNIVERSITÄT DARMSTADT

Band alignment between ternary absorber compounds and In₂S₃

Ghorbani, Erhart and Albe, Phys. Rev. Materials 3 (2019)

TECHNISCHE UNIVERSITÄT DARMSTADT

Oxygen in β -In₂S₃

- β-In₂S₃ is an stable material when subjected to oxygen reservoir.
- For both In- and S-rich samples, formation energies of oxygen in different sulfur sites is low, which indicates that O substituting anionic site forms in indium sulfide in ample concentrations.
- Oxygens in all sulfur sites induce an extremely deep (0/+) donor level close to VBM – Being electrically inactive.

Ghorbani and Albe, Phys. Rev. B 98 (2018)

Chlorine in β -In₂S₃

- β -In₂S₃ is an stable material when subjected to chlorine reservoir.
- Concentration of Cl on sulfur lattice sites is large.
- Incorporation of Cl-on-In sites under In-rich condition are very high in energy, hence, their formation is improbable. However, under S-rich condition their formation becomes probable.
- Incorporation of Cl in all sulfur sites features a raise in n-type conductivity.

Ghorbani and Albe, Phys. Rev. B 98 (2018)

Take-home message

- I. Na and Cu in β -In₂S₃
 - Independent of the CuInSe₂/In₂S₃ interface orientation, having a stable interface in the presence of Na and Cu reservoir is thermodynamically impossible
- **II.** Band alignemnt at the absorber/buffer interface
 - In₂S₃ forms an unfavorable cliff-like CBO with all CIGS absorber compounds
 - At the Culn₅Se₈/Culn₅S₈ interface, the CBO has a spike of 0.03 eV
 - At the Culn₅Se₈/Naln₅S₈ interface, the CBO has a spike of 0.12 eV
- III. O and Cl in β -In₂S₃
 - Despite Cu and Na, O and Cl in the buffer side of the interface present in lower concentrations, and do not trigger chemical modification of the In₂S₃
 - O_i and Cl_{In} are the sources of n-type PPC in doped In₂S₃
 - There is a large miscibility gap between In₂S₃ and In₂O₃

