

Applications of Seismic Full-Waveform Inversion on Shallow-Seismic and Ultrasonic Data

presented at the NIC Symposium 2020

Thomas Bohlen, Yudi Pan, Jonas Müller

1. Introduction

Agenda

2. Methodology and Challenges

- 3. Applications of FWI
- 3.1 Shallow marine guided waves
- 3.2 Near surface characterization using surface waves
- 3.3 Nondestructive testing
- 3.4 Medical imaging
- 4. Conclusions

Agenda

1. Introduction

2. Methodology and Challenges

3. Applications of FWI

- 3.1 Shallow marine guided waves
- 3.2 Near surface characterization using surface waves
- 3.3 Nondestructive testing
- 3.4 Medical imaging

4. Conclusions

Seismic wave propagation is complex

Observed seismograms contain signals of P-waves, S-waves, surface waves, mode conversions,...

Click on frame to play movie

Find all earth models that predict all signals by full wave modelling !

State of the art: Find <u>one</u> numerical model that predicts <u>selected</u> signals at low frequencies by <u>full</u> wave modelling.

Goals of FWI

Find all earth models that predict all signals by full wave modelling !

State of the art: Find <u>one</u> numerical model that predicts <u>selected</u> signals at low frequencies by <u>full</u> wave modelling.

Goals of FWI

Find all earth models that predict all signals by full wave modelling !

State of the art: Find <u>one</u> numerical model that predicts <u>selected</u> signals at low frequencies by <u>full</u> wave modelling.

Benefits

- Improved resolution: $pprox rac{\lambda}{2}$ S
- 2 Multi-parameter reconstruction:
 - P-wave velocity ③
 - S-wave velocity ☺
 - Attenuation 🙂
 - Anisotropy 🙂
 - Oensity S
- Better petrophysical characterization of rocks

Applications of FWI

In recent 20 years FWI has received great attention and has been applied sucessfully to a broad range of spatial scales and wave types

Agenda

1. Introduction

2. Methodology and Challenges

3. Applications of FWI

- 3.1 Shallow marine guided waves
- 3.2 Near surface characterization using surface waves
- 3.3 Nondestructive testing
- 3.4 Medical imaging

4. Conclusions

8 | 48 28.02.2020 T. Bohlen - Applications of Seismic Full-Waveform Inversion on Shallow-Seismic and Ultrasonic Data

8 | 48 28.02.2020 T. Bohlen - Applications of Seismic Full-Waveform Inversion on Shallow-Seismic and Ultrasonic Data

Forward modelling

.

FWI: iterative data fitting procedure

Initial model m₀

8 | 48

Optimization m_{i+1}

Challenges of FWI (1/6)

Mitigate non-linearities by multi-scale approach

we need sufficient low wave numbers in the initial model or the observed data

Challenges of FWI (2/6)

Suitable misfit definition

- to measure the misfit of the relevant signals
- Normalized L2, envelope, optimal transport,...
- defines the adjoint sources
- tradeoff between robustness (against noise, cycle skipping) and resolution

Challenges of FWI (3/6)

Appropriate physics for wave propagation

- to model the relevant signals
- multi-parameter reconstruction
- consider forward and adjoint equations

Computational requirements

Challenges of FWI (4/6)

Numerical solution and space discretization

- Finite-Differences, Spectral elements
- Boundary condition (free surface topography is challenge with FD)

FD: Cartesian grid

FD: Stretched grid

Specfem: Triangular

(Igel et al. 2011)

Challenges of FWI (5/6)

Optimization method

- efficient calculation of gradients by the adjoint method
- available methods: steepest-descent, conjugate gradient, L-BFGS, Gauß-Newton, Truncated Newton etc.
- consider global strategy if number of parameters is small (uncertainty estimation)

Global

Challenges of FWI (6/6)

High Performance Computing

 Efficient forward and adjoint simulation on heterogeneous architectures (CPU/GPU)

Agenda

1. Introduction

2. Methodology and Challenges

3. Applications of FWI

3.1 Shallow marine guided waves

- 3.2 Near surface characterization using surface waves
- 3.3 Nondestructive testing
- 3.4 Medical imaging

4. Conclusions

- Ocean-Bottom-Cable
- Length: 6 km, 240 Hydrophones
- 61 Airgun shots

- Water depth approx. 130m
- Maximum offset 9 km

(Kunert 2015, Kunert et al. 2016, Habelitz 2017) Data was provided by Addax

Acoustic simulation of wavefield in the final FWI model $_{\mbox{\tiny Click to play}}$

Karkruhe Institute of Technology

FWI of OBC data in shallow water

Performance of FWI

Click to play

⁽Habelitz 2017)

⁽Habelitz 2017)

Conclusions

- Acoustic FWI of guided waves in shallow water was successful
- Higher resolution of Vp model reveals gas accumulations and pathways along faults
- Consistent with migrated images of reflected waves (independent data)

Agenda

1. Introduction

2. Methodology and Challenges

- 3. Applications of FWI
- 3.1 Shallow marine guided waves

3.2 Near surface characterization using surface waves

- 3.3 Nondestructive testing
- 3.4 Medical imaging

4. Conclusions

FWI for near surface characterization

Shallow seismic surface waves are useful for geotechnical site characterization

- easily excited by a hammer blow
- surface waves are strong signals
- highly sensitive for S-wave velocity
- depth of investigation up to 10-15 m

FWI of surface waves is especially useful to infer small-scale lateral variations of V_s .

Field laboratory glider field Rheinstetten

Profile crosses known trench "Ettlinger Linie" excavated in the 18th century. The trench is 5m wide and 2m deep.

28.02.2020 T. Bohlen - Applications of Seismic Full-Waveform Inversion on Shallow-Seismic and Ultrasonic Data (cc) SY-SA 28 | 48

First visco-elastic FWI of field data

⁽Gao et al. 2020)

First visco-elastic FWI of field data

⁽Gao et al. 2020)

Visco-elastic FWI for near surface characterization

Conclusions

- Visco-elastic FWI can resolve small-scale structures in P-wave and S-wave velocity in the near surface
- Further research is necessary to improve models of attenuation and density

Agenda

1. Introduction

2. Methodology and Challenges

3. Applications of FWI

- 3.1 Shallow marine guided waves
- 3.2 Near surface characterization using surface waves

3.3 Nondestructive testing

3.4 Medical imaging

4. Conclusions

Motivation

Non-destructive testing (NDT):

- Crucial task to prevent failures of building materials
- Current methods are limited in recovering material parameters

♀ IDEA

Full-waveform inversion can help to improve imaging of flaws and other anomalies in building materials

2D reconstruction test

Figure 1: 2D model with pipe and additional perturbations.

Start animation: forward simulation

Results of elastic FWI

Data fit

Figure 2: Initial data (red) and final data (black).

Application of elastic FWI for NDT

Conclusions

- High potential in recovering multi-parameter models with high resolution
- First test with measured data are promising
- Models with complex 3D pertubations and geometries will require 3D FWI

Agenda

1. Introduction

2. Methodology and Challenges

3. Applications of FWI

- 3.1 Shallow marine guided waves
- 3.2 Near surface characterization using surface waves
- 3.3 Nondestructive testing
- 3.4 Medical imaging
- 4. Conclusions

Acquisition geometry

2D acquisition geometry used in the reconstruction test. The ring array is equipped with 256 receivers and 16 sources.

Prototype of a ultrasound device with a full 3D acquisition geometry (Ruiter et al., 2017). (Kühn 2018)

Reconstruction of speed of sound

True model

True, initial and inverted speed of sound models (Kühn 2018)

Reconstruction of damping

True model

True, initial and inverted quality factor models (Kühn 2018)

T. Bohlen - Applications of Seismic Full-Waveform Inversion on Shallow-Seismic and Ultrasonic Data (cc) SY-SA 28.02.2020 48

Data fit

(Kühn 2018)

Visco-acoustic FWI for medical imaging

Conclusions

- Forward modelling is very expensive due to the high frequencies in medical imaging
- 3D applications are still prohibitive
- 2D visco-acoustic FWI of synthetic data with good illumination works very well
- Detailed models of P-velocity and attenuation can be recovered

Agenda

1. Introduction

2. Methodology and Challenges

- 3. Applications of FWI
- 3.1 Shallow marine guided waves
- 3.2 Near surface characterization using surface waves
- 3.3 Nondestructive testing
- 3.4 Medical imaging

4. Conclusions

Conclusions

Summary

First applications revealed that FWI is applicable on different wave types acquired on a broad range of spatial scales. We are still in the early stage of the development of this technology.

Current directions of research

- Application to 3D seismic data
- Reduction of number of forward modellings for 3D applications
- Multi-parameter reconstruction techniques using higher order optimization methods
- Quantification of uncertainties

Acknowledgement

We greatfully acknowledge financial support from

Federal Ministry for Economic Affairs and Energy

References

- Gao, L., Yudi, P. & Bohlen, T. (2020), 'Reconstructing 2D near-surface models via viscoelastic full waveform inversion of shallow-seismic surface wave', submitted to Geophysical Journal International.
- Habelitz, P. M. (2017), 2D akustische Wellenforminversion geführter Wellen im Flachwasser, Master's thesis, Karlsruhe Institute of Technology. URL: https://publikationen.bibliothek.kit.edu/1000080198
- Igel, H., Käser, M. & Stupazzini, M. (2011), Seismic Wave Propagation in Media with Complex Geometries, Simulation of, Springer New York, New York, NY, pp. 765–787.

URL: https://doi.org/10.1007/978-1-4419-7695-6_41

- Kühn, F. (2018), Ultrasound medical imaging using 2d viscoacoustic full waveform inversion, Master's thesis, Karlsruhe Institute of Technology. URL: https://publikationen.bibliothek.kit.edu/1000089567
- Kunert, M. (2015), Anwendung der 2D akustischen Wellenforminversion auf OBC-Daten, Master's thesis, Karlsruhe Institute of Technology. URL: https://publikationen.bibliothek.kit.edu/1000052718
- Kunert, M., Kurzmann, A. & Bohlen, T. (2016), Application of 2D Acoustic Full Waveform Inversion to OBC-data in Shallow Water, in '78th EAGE Conference and Exhibition 2016', EAGE.

URL: http://earthdoc.eage.org/publication/publicationdetails/?publication=85791