Flavour Structure of the Baryon Octet

Sara Collins for RQCD
University of Regensburg

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 813942.

NIC Symposium 2020, 27-28th Feb. 2020, FZJ

Overview

- Interest in the structure of the baryon octet and flavour symmetry (breaking) \rightarrow how the quark and gluon constituents account for the properties of the baryons.
- Numerical simulations: lattice QCD.
- Octet baryon mass spectrum, $\pi B \sigma$ terms, axial charges and form factor (nucleon) and distribution amplitudes.
- Some computational details.
- Summary and outlook.

RQCD: G Bali, V Braun, S Collins, M Göckeler, P Korcyl (Krakow), M Löffler, A Schäfer, E Scholz, J Simeth, W Söldner, A Sternbeck (Jena), P Wein, S Weishäupl, T Wurm + ...

Baryon octet

$J^{P}=\frac{1}{2}^{+}$, classified in terms of electric charge Q and strangeness (flavour QN) S.

Bound states of quarks and gluons: simple picture $q q q$ with $q \in\{u, d, s\}$.

Flavour symmetry

If $m_{u}=m_{d}=m_{s}$, properties of octet baryons related

$$
m_{p}=m_{n}=m_{\Sigma^{ \pm, 0}}=m_{\Xi^{-, 0}}=m_{\Lambda^{0}}
$$

Decay rates of β-decays:

$$
\begin{aligned}
& n \rightarrow p+e^{-}+\bar{\nu}_{e}, \quad \Lambda^{0} \rightarrow p+e^{-}+\bar{\nu}_{e}, \quad \Sigma^{-} \rightarrow n+e^{-}+\bar{\nu}_{e} \\
& \text { 三}^{-} \rightarrow \Lambda^{0}+e^{-}+\bar{\nu}_{e}, \ldots
\end{aligned}
$$

We have $m_{u}, m_{d} \ll \Lambda_{\text {int }}, m_{s}$ somewhat heavier.

Numerical simulations (lattice QCD) to determine properties of baryon octet:
Determine pattern of symmetry breaking: $m_{u}=m_{d} \neq m_{s}$.
Also simulate $m_{u}=m_{d}=m_{s}$.

The Standard Model

Mass generation via the Higgs mechanism.

Strong interaction (QCD):
g and quarks.
Binds quarks and gluons into hadrons.

Electromagnetic interaction (QED):
γ and electrically charged particles.

Weak interaction (EWT):

$W^{ \pm}, Z, \mathrm{H}$ and leptons and quarks.
Responsible for β decay $n \rightarrow p+e^{-}+\bar{\nu}_{e}$.

	Strong	Electromagnetic	Weak	Gravity
Range (m)	10^{-15}	∞	10^{-18}	∞
Relative Strength	1	10^{-2}	10^{-13}	10^{-38}

Shortcomings of the Standard Model

No explanation for:
Values of $25+1+2$ parameters
Masses: $q \in\{u, d, s, c, b, t\}$, $\ell \in\{e, \mu, \tau\}, \nu \in\left\{\nu_{e}, \nu_{\mu}, \nu_{\tau}\right\}, W, H$.

Couplings: $\alpha_{S}, \alpha_{e m}, \alpha_{w}$
Quark mixing: 3 angles, 1 CP violating phase

$$
\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \tag{3}\\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)
$$

Neutrino mixing: 3 angles, 1 phase(s)
Strong CP angle.

Dark matter and dark energy

Matter-antimatter asymmetry

Gravity not included,

Experimental searches for new physics

Direct detection of new particles
e.g. Dark matter scattering with nucleons.
$\chi+p \rightarrow \chi+p, \quad \chi+n \rightarrow \chi+n$ in Xe

Creation of new particles in colliders e.g. LHC $p+p$

Exploration of neutrino sector

Neutrino oscillation experiments detectors

Nuclear targets: $\nu_{\mu}+n \rightarrow \mu^{-}+p$

Low energy precision β experiments decay (ultra cold neutrons), neutron electric dipole moment ...

Proton structure

Interested in the fundamental interaction with the quarks and gluons

PDG 2016

Confinement: quarks and gluons bound within hadrons

$$
\text { Expt } \propto\binom{\text { Behaviour of quarks }}{\text { within the proton }} \otimes\binom{\text { Fundamental }}{\text { process }}
$$

Long distance/low energy information: non-perturbative. Matrix elements $\left\langle p\left(p_{f}\right)\right| J\left|p\left(p_{i}\right)\right\rangle$ evaluated numerically.

Baryon Structure

$$
\text { For brevity } \Delta q+\Delta \bar{q} \rightarrow \Delta q,\langle x\rangle_{q}+\langle x\rangle_{\bar{q}} \rightarrow\langle x\rangle_{q}
$$

(Longitudinal) momentum sum rule:

$$
1=\langle x\rangle_{g}+\sum_{q \in u, d, s, \ldots}\langle x\rangle_{q}
$$

$\langle x\rangle_{q, g}$: fraction of the baryon momentum carried by the quark or gluon.
(Longitudinal) spin sum rule: $\quad \frac{1}{2}=\frac{1}{2} \sum_{q \in u, d, s, \ldots} \Delta q+L_{\psi}+J_{g}$
Δq, contribution of the quark spin, $L_{\psi}=\sum_{q} L_{q}$, quark orbital angular momentum and J_{g}, the gluon total angular momentum.

Simple uud picture of proton:

$$
\langle x\rangle_{u}+\langle x\rangle_{d}=1 \text { and } \Delta u+\Delta d=1
$$

Expt:
$\langle x\rangle_{u}+\langle x\rangle_{d} \sim 0.32$ at $\mu^{2}=10 \mathrm{GeV}^{2}$
$\Delta u+\Delta d \sim 0.35$ at $\mu^{2}=4 \mathrm{GeV}^{2}$.

Flavour symmetry

Focus on the properties of the proton/neutron (nucleons), however, flavour separation can sometimes be difficult.

Example: determination of $\Delta q, q \in\{u, s, d\}$ for the proton/neutron.
Access a combination $\left(a_{8} \pm 3 a_{3}\right) C_{N S}+4 a_{0} C_{s}$ from deep-inelastic scattering experiments ($N+e^{-} \rightarrow X+e^{-}, \pm$for $N=p, n$).

$$
\begin{aligned}
g_{A}=a_{3} & =\Delta u-\Delta d \\
a_{8} & =\Delta u+\Delta d-2 \Delta s \\
a_{0}\left(\mu^{2}\right) & =\Delta u+\Delta d+\Delta s
\end{aligned}
$$

Axial charge, $g_{A}=a_{3}$, is known very precisely from neutron β decay.
Assume $\operatorname{SU}(3)$ flavour symmetry (in $q \in\{u, d, s\}$) to extract a_{8} from hyperon β-decays.

Hyperon: baryon containing one or more s quarks and u or $d: \Lambda^{0}, \Sigma^{ \pm, 0}, \Xi^{-, 0}, \ldots$

Lattice QCD

"Measurement": average over a representative ensemble of gluon configurations $\left\{U_{i}\right\}$ with probability $P\left(U_{i}\right) \propto \int[d \psi][d \bar{\psi}] e^{-S[U, \psi, \bar{\psi}]}$

$$
\langle O\rangle=\frac{1}{n} \sum_{i=1}^{n} O\left(U_{i}\right)+\Delta O \quad \Delta O \propto \frac{1}{\sqrt{n}} \xrightarrow{n \rightarrow \infty} 0
$$

Input: discretized $\mathscr{L}_{Q C D}=\frac{1}{16 \pi \alpha_{s}(a)} F F+\sum_{f} \bar{q}_{f}\left(D+m_{f}(a)\right) q_{f}$

$$
\begin{aligned}
m_{\bar{\Xi}}^{\text {latt }}=m_{\bar{\Xi}}^{\text {phys }} & \longrightarrow a \\
M_{\pi}^{\text {latt }} / m_{\bar{\Xi}}^{\text {latt }}=M_{\pi}^{\text {phys }} / m_{\bar{\Xi}}^{\text {phys }} & \longrightarrow m_{u}(a) \approx m_{d}(a)
\end{aligned}
$$

Output: hadron masses, matrix elements, decay constants, etc...
Required:

1. Volume, $L=N a \rightarrow \infty$: FSE suppressed with $\exp \left(-L M_{\pi}\right) \Rightarrow L M_{\pi} \gtrsim 4$.
2. Lattice spacing, $a \rightarrow 0$: functional form known: $\mathcal{O}\left(a^{2}\right), \mathcal{O}\left(\alpha_{s} a\right) \Rightarrow \approx 4$ lattice spacings.
3. Quark mass, $m_{q}^{\text {latt }} \rightarrow m_{q}^{\text {phys }}$: chiral perturbation theory $(\chi \mathrm{PT})$ helps for $m_{u d}$ but $m_{u d}^{\text {latt }}$ must be sufficiently small to start with. $M_{\pi}^{2} \propto m_{u d}$.

Computational challenges

Cost of simulation is proportional to

- number of points: $\sim N^{4}=(L / a)^{4}$
- condition number of linear system: $1 / M_{\pi}^{2}$
- $L^{1 / 2} / M_{\pi}$ in (Omelyan) time integration within hybrid Monte Carlo
- $1 / a^{\geq 2}$ critical slowing down (autocorrelations)

Adjusting $L \propto 1 / M_{\pi}$ this means:

$$
\operatorname{cost} \propto \frac{1}{a^{\geq 6} M_{\pi}^{7.5}}
$$

For baryonic observables at small M_{π} additional noise/signal problems. State of the art: 192×96^{3} sites, corresponding to $\approx\left(2 \times 10^{10}\right)^{2}$ (sparse) complex matrices.
Tremendous progress in Hybrid Monte Carlo, solver, noise reduction.

$N_{f}=2+1$ CLS ensembles

Coordinated Lattice Simulations (CLS): Berlin, CERN, Mainz, UA Madrid, Milano Bicocca, Münster, Odense, Regensburg, Rome I and II, Wuppertal, DESY-Zeuthen. * Non-perturbatively improved clover fermion action and tree-level Lüscher-Weisz gauge action.
\star Mostly open boundary conditions in time.
Wilson flow action density, $t_{0}^{2} E\left(t \approx t_{0}\right), M_{\pi} \approx 340 \mathrm{MeV}$, averaged over $\approx 1 \mathrm{fm}$ slice.

CLS ensembles: M_{π} vs a^{2}

^ Three trajectories, physical point ensembles.

* Typically 6000-10000 MDUs.

$2 m_{\ell}+m_{s}=$ const.

$m_{s}=$ const.

$$
m_{\ell}=m_{s}
$$

E: $192 \cdot 96^{3}$, J: $192 \cdot 64^{3}$, D: $128 \cdot 64^{3}$, N: $128 \cdot 48^{3}, \mathrm{C}: 96 \cdot 48^{3}$,
S: $128 \cdot 32^{3}, \mathrm{H}: 96 \cdot 32^{3}, \mathrm{~B}: 64 \cdot 32^{3}, \mathrm{U}: 128 \cdot 24^{3}$.

CLS ensembles: $m_{\ell-} m_{s}$ plane

Approach to the physical point, $m_{s}+2 m_{\ell}=$ const [QCDSF+UKQCD: 1003.1114], and $\widehat{m}_{s} \approx$ const [RQCD, 1606.09039; 1702.01035],

Investigate flavour symmetric theory $m_{u, d}=m_{s}$ (red line).
Investigate flavour symmetry breaking (blue line).

CLS ensembles: spatial volume

$\mathbf{L M}_{\pi}<\mathbf{4} \quad 4 \leq \mathrm{LM}_{\pi}<\mathbf{5} \quad \mathrm{LM}_{\pi} \geq \mathbf{5}$

Octet baryon spectrum: $B \in\{N, \Lambda, \Sigma, \equiv\}$, Preliminary

Simultaneous fit to octet masses: (12 parameters)

$$
\mathrm{m}_{B}\left(\mathbb{M}_{\pi}, \mathbb{M}_{K}, \mathrm{a}\right)=\mathrm{m}_{\mathrm{B}}\left(\mathbb{M}_{\pi}, \mathbb{M}_{K}, 0\right)\left[1+c a^{2}+\bar{c} a^{2} \overline{\mathbb{M}}^{2}+\delta c_{B} a^{2} \delta \mathbb{M}^{2}\right]
$$

$\mathrm{m}_{B}=\sqrt{8 t_{0}} m_{B}, \mathrm{a}=a / \sqrt{8 t_{0}^{*}}, \overline{\mathbb{M}}^{2}=\left(2 \mathbb{M}_{K}^{2}+\mathbb{M}_{\pi}^{2}\right) / 3, \delta \mathbb{M}^{2}=2\left(\mathbb{M}_{K}^{2}-\mathbb{M}_{\pi}^{2}\right)$
W. Söldner

Agreement with expt.

Finite volume: $L M_{\pi}>$ 3.4. $O\left(a^{2}\right)$ effects removed using fit. Similarly, data shifted to $\overline{\mathbb{M}}^{2}=\overline{\mathbb{M}}^{2, \text { phys }}, \overline{\mathbb{M}}_{\bar{s} s}^{2}=\overline{\mathbb{M}}_{\bar{s} s}^{2, \text { phys }}$, where $\overline{\mathrm{M}}_{\bar{s} s}^{2}=2 \mathbb{M}_{K}^{2}-\mathbb{M}_{\pi}^{2}$.

Mass extrapolations

NNLO covariant $\operatorname{SU}(3)$ baryon ChPT: $\left(\mathbb{M}_{\eta_{8}}^{2}=\overline{\mathrm{M}}^{2}+\delta \mathrm{M}^{2} / 3\right)$

$$
\begin{aligned}
& \mathrm{m}_{B}\left(\mathbb{M}_{\pi}, \mathbb{M}_{K}, 0\right)=\mathrm{m}_{0}+{\overline{\mathrm{B}} \overline{\mathrm{M}}^{2}+\delta \mathrm{b}_{B} \delta \mathbb{M}^{2}+}^{g_{B, \pi} f_{O}\left(\frac{\mathbb{M}_{\pi}}{\mathrm{m}_{0}}\right)+\mathrm{g}_{B, K} f_{O}\left(\frac{\mathbb{M}_{K}}{\mathrm{~m}_{0}}\right)+\mathrm{g}_{B, \eta_{8}} f_{O}\left(\frac{\mathbb{M}_{\eta_{8}}}{\mathrm{~m}_{0}}\right)}
\end{aligned}
$$

EOMS regularisation ${ }^{*}: f_{O}(x)=-2 x^{3}\left[\sqrt{1-x^{2} / 4} \arccos (x / 2)+x \ln (x) / 2\right]$
SU(3) constraints:
$\star \delta \mathrm{b}_{B}=\delta \mathrm{b}_{N, \Lambda, \Sigma, \equiv}$ determined by 2 parameters.
$\star \mathrm{g}_{B, \pi, K, \eta_{8}}=g_{B, \pi, K, \eta_{8}} m_{0}^{3} /\left(4 \pi F_{0}\right)^{2}$ known quadratic functions of the LECs F, D.
$m_{\bar{\Xi}}^{\text {latt }}=m_{\equiv}^{\text {ph }}$ imposed to fix the scale: $\sqrt{8 t_{0, \mathrm{ph}}}=0.4128(22)(? ?) \mathrm{fm}$.
Compatible with $\sqrt{8 t_{0, \text { ph }}}=0.413(6) \mathrm{fm}$ from $F_{\pi}+2 F_{K}$ [ALPHA,1608.08900].

* Extended on mass shell scheme.

σ terms: $\sigma_{q, B}=m_{q}\langle B| q \bar{q}|B\rangle$

Feynman-Hellmann theorem

$$
\frac{\partial E(\lambda)}{\partial \lambda}=\langle\psi(\lambda)| \frac{\partial H(\lambda)}{\partial \lambda}|\psi(\lambda)\rangle, \quad H(\lambda)=H_{0}+\lambda H_{1} \text { with } \lambda H_{1}^{Q C D} \rightarrow m_{q} \bar{q} q
$$

$$
\sigma_{\pi B}=m_{u} \frac{\partial m_{B}}{\partial m_{u}}+m_{d} \frac{\partial m_{B}}{\partial m_{d}} \approx M_{\pi}^{2} \frac{\partial m_{B}}{\partial M_{\pi}^{2}}, \quad \sigma_{s B}=m_{s} \frac{\partial m_{B}}{\partial m_{s}} \approx \frac{1}{2} M_{\bar{s} s}^{2} \frac{\partial m_{B}}{\partial M_{\bar{s} s}^{2}}
$$

$\sigma_{\pi B}=\sigma_{u B}+\sigma_{d B}$.
$\sigma_{s B}$ is not well determined as m_{s} is not varied near the physical point.
Pion sigma terms: Preliminary

$$
\begin{array}{ll}
\sigma_{\pi N}=41(2)(2)(? ?) \mathrm{MeV} & \sigma_{\pi \Lambda}=29(2)(1)(? ?) \mathrm{MeV} \\
\sigma_{\pi \Sigma}=23(1)(1)(? ?) \mathrm{MeV} & \sigma_{\pi \equiv}=13(1)(0)(? ?) \mathrm{MeV}
\end{array}
$$

Compatible with [FLAG,1902.08191] average (FH+direct) for $N_{f}=2+1$ of $\sigma_{\pi N}=39.7(3.6) \mathrm{MeV}$ dominated by [BMW-c,1510.08013] $\sigma_{\pi N}=38(3)(3) \mathrm{MeV}$.
Phenomenological estimate from an analysis of $\pi-N$ scattering data: [Hoferichter, 1506.04142] $\sigma_{\pi N}=59.1(3.5) \mathrm{MeV}$.

Direct dark matter detection

Scattering of DM (WIMPs) off nuclei, near zero recoil.
Spin-independent effective interaction $\sim \bar{\chi} \chi \bar{q} q$

$$
\sigma^{S l} \propto\left[Z f_{p}+(A-Z) f_{n}\right]^{2}, \quad \frac{f_{N}}{m_{N}}=\sum_{q} f_{T_{q}}^{N} \frac{\alpha_{q}}{m_{q}}, \quad f_{T_{q}}^{N}=\frac{1}{m_{N}} \sigma_{q}^{N}
$$

$N=p, n$

Dark matter-nucleon spin independent cross-section

Dark Matter Limit Plotter 2019.

Yellow: neutrino background.
Also spin dependent cross-section, depends on $\langle N| \bar{q} \gamma_{\mu} \gamma_{5} q|N\rangle$, less well constrained. Use σ_{q} for predictions of $\sigma_{S I} \rightarrow$ rule out parameter space of models.

Axial charges of the baryon octet: $m_{u, d}=m_{s}$

For neutron β-decay, axial charge:

$$
g_{A}=a_{3}=\Delta u-\Delta d=\langle n|\left(\bar{u} \gamma_{0} \gamma_{5} d\right)|p\rangle=\langle p|\left(\bar{u} \gamma_{0} \gamma_{5} u-\bar{d} \gamma_{0} \gamma_{5} d\right)|p\rangle=\langle n|\left(\bar{d} \gamma_{0} \gamma_{5} d-\bar{u} \gamma_{0} \gamma_{5} u\right)|n\rangle
$$

Define axial charges for other members of the octet.
Characterize weak decays: $\Sigma \rightarrow \Sigma, \equiv \rightarrow \equiv, \equiv \rightarrow \Sigma, \equiv \rightarrow \wedge, \wedge \rightarrow N \ldots$
Isospin $I=1, \frac{1}{2}$ and hypercharge $Y=S+1$.

$$
\begin{aligned}
g_{A}^{B} & =(\Delta u-\Delta d)^{B} \\
& =\langle B|\left(\bar{u} \gamma_{0} \gamma_{5} u-\bar{d} \gamma_{0} \gamma_{5} d\right)|B\rangle \\
& =2 l_{3}(F+Y D)
\end{aligned}
$$

$$
I=0
$$

$$
\begin{aligned}
g_{A}^{\wedge} & =\langle\Lambda|\left(\bar{u} \gamma_{0} \gamma_{5} d\right)|\Sigma\rangle \\
& =2 D
\end{aligned}
$$

Axial charges of the baryon octet: $m_{u, d}=m_{s}$ $g_{A}^{p}=F+D, g_{A}^{\Sigma^{+}}=2 F, g_{\bar{A}}^{\overline{\bar{O}}^{0}}=F-D$.

Simple finite V, finite a, m_{q} fit so far.

$$
F=C_{0}+C_{M} m_{\pi}^{2}+C_{L} m_{\pi}^{2} e^{-m_{\pi} L} / \sqrt{m_{\pi} L}+C_{a} a^{2}
$$

In the future higher order ChPT will be considered.
Cf. $D / F>2$ from m_{B} extrapolation.
Expt. hyperon semi-leptonic decays $+\operatorname{SU}(3)$ symmetry [Cabbibo,hep-ph/0307298] $F=0.463(8)$ and $D=0.804(8)$ at the physical point (not at $m_{\pi}=0$).

Pion decay constant: $m_{u, d}=m_{s}$

Weak decay of the pion:

$$
\pi^{+} \rightarrow \mu^{+} \nu_{\mu}, \quad\langle 0| \bar{u} \gamma_{0} \gamma_{5} d|\pi\rangle=i m_{\pi} f_{\pi}
$$

$m_{q} \rightarrow 0, f_{\pi} \rightarrow \sqrt{2} F_{0}$

Finite V, finite $a, \operatorname{SU}(3)$ ChPT NLO (blue) and NNLO (grey).
Analysis in progress for F_{π} for $m_{u / d} \neq m_{s}$ ensembles.

SU(3) flavour symmetry breaking in the baryon octet $m_{u / d}=m_{s}: g_{A}^{p}=F+D, g_{\bar{A}}^{\overline{ }^{0}}=F-D, g_{A}^{\Sigma^{+}}=2 F \Rightarrow\left(g_{A}^{p}+g_{\bar{A}}^{\overline{\overline{0}}^{0}}\right) / g_{A}^{\Sigma^{+}}=1$.

Away from this limit: corrections start at $O\left(\delta m_{l}\right), \delta m_{l}=m_{s}-m_{u / d} \propto M_{K}^{2}-M_{\pi}^{2}$.
Shown: $\delta_{S U(3)}^{A}=\left(g_{A}^{p}+g_{A}^{\overline{\bar{A}}^{0}}\right) / g_{A}^{\Sigma^{+}}-1$

Line not a fit. Results shown from both $m_{s}=$ constant and $m_{u, d}+m_{s}=$ constant ensembles.

SU(3) flavour symmetry breaking in the baryon octet

g_{A}
$\langle x\rangle_{\Delta u^{-}-\Delta d^{-}}$

Ensembles
I N202
\$ H102
${ }^{1}$ N203
I N302
I N200
I H105
${ }^{\$} 1303$
C101
$\$$ D200
$\$$ D200
$\$ \quad$ D201

Ensembles
\$ N 202
\$ H102
${ }^{1}$ N203
\$ N 302
I N200
\$ J303
\$ C101
I D200
\$ D201

Flavour symmetry breaking is mild.

Long base-line neutrino oscillation experiments

Super-KAMIOKANDE

T2K: Tokai to Super-Kamiokande, $E=0.6 \mathrm{GeV}, L / E \approx 500 \mathrm{~km} / \mathrm{GeV}$. Also, e.g. NO $\nu \mathrm{A}$ USA, $L / E \approx 400 \mathrm{~km} / \mathrm{GeV}$, DUNE USA $L / E \approx 520 \mathrm{~km} / \mathrm{GeV}$.

Muon neutrino beam: protons on nuclei \rightarrow pions and kaons $\rightarrow \mu^{+} \nu_{\mu}$

Neutrino of definite flavour, ν_{μ} : combination of mass eigenstates \rightarrow neutrino mixing in the time evolution $\left|\nu_{j}(t)\right\rangle=e^{-i m_{j}^{2} L /(2 E)}\left|\nu_{j}(0)\right\rangle$

$$
P_{\alpha \rightarrow \beta}=\left|\left\langle\nu_{\beta}(t) \mid \nu_{\alpha}\right\rangle\right|^{2}=\left|\sum_{j} \mathbf{U}_{\alpha \dot{j}}^{*} \mathbf{U}_{\beta \mathrm{j}} e^{-i m_{\mathrm{j}}^{2} L / 2 E}\right|^{2}, \quad \text { PMNS matrix } \mathbf{U}
$$

Near and far detectors.

$$
\mathbf{N}_{\text {far }}^{\mu}\left(\mathbf{E}_{\nu}\right)=\mathbf{N}_{\text {near }}^{\mu}\left(\mathbf{E}_{\nu}\right) \times[\text { flux }(\mathrm{L})] \times[\text { detector }] \times\left[1-\sum_{\beta} \mathbf{P}_{\mu \rightarrow \beta}\left(\mathbf{E}_{\nu}\right)\right]
$$

E_{ν}, must be reconstructed from the momentum of the detected charged lepton.
Trivial for $\nu_{\mu}+n \rightarrow \mu^{-}+p$ if the initial momentum of n and of ν_{μ} are known.
But: The neutrino beam is not monochromatic. Neutron $p_{\text {Fermi }} \approx 200 \mathrm{MeV}$ is washed out since bound in nucleus. The lepton momentum reconstruction is often incomplete. Misidentification of inelastic scattering as elastic scattering.

Nucleon axial form factor $G_{A}\left(Q^{2}\right)$

Monte Carlo simulations performed to predict E_{ν}. These require the differential cross-section which depends on nuclear models and

$$
\left\langle n\left(\vec{p}_{f}\right)\right|\left(\bar{u} \gamma_{0} \gamma_{5} d\right)\left|p\left(\vec{p}_{i}\right)\right\rangle \rightarrow G_{A}\left(Q^{2}\right), Q^{2}=-q^{2}, q=p_{f}-p_{i} .
$$

Pre 1990 information on $\mathbf{G}_{\mathbf{A}}\left(\mathbf{Q}^{2}\right)$ extracted from $\bar{\nu}-p$ and $\nu-d$ scattering. [Mosel,1602.00696]

$$
G_{A}\left(Q^{2}\right)=\frac{g_{A}}{\left(1+\frac{Q^{2}}{\left.M_{A}\right)^{2}}\right)^{2}}
$$

Shown $M_{A}=1.03(5) \mathrm{GeV}$
MiniBooNE: [Aguilar-Arevalo,1002.2680]

$$
M_{A}=1.35(17) \mathrm{GeV}
$$

Errors of the new experiments will be dominated by these systematics.

Nucleon axial form factor $G_{A}\left(Q^{2}\right)$

$G_{A}\left(Q^{2}\right)$ from $Q^{2}=0$ to $1.0 \mathrm{GeV}^{2}$. Three of five lattice spacings shown. [RQCD,1911.13150]

Fit: finite V, finite a, m_{q}, Q^{2} dependence.
Consider dipole form $G_{A}=g_{A} /\left(1+Q^{2} / M_{A}\right)^{2}$ and less constrained z-expansion.
(Form factor $G_{A}\left(Q^{2}\right)$ fitted together with $G_{P}\left(Q^{2}\right)$ and $\tilde{G}_{P}\left(Q^{2}\right)$)

Nucleon axial form factor $G_{A}\left(Q^{2}\right)$

curves: fits with dipole and z-expansion forms.
lines: slope at $Q^{2}=0, G_{A}^{-1}(0) d G_{A} / d Q^{2}=-\left\langle r_{A}^{2}\right\rangle / 6,\left\langle r_{A}^{2}\right\rangle=12 / M_{A}^{2}$
$M_{A}=1.30(7) \mathrm{GeV}$ (dipole), $M_{A}=1.01(7) \mathrm{GeV}$ (z-exp.) [RQCD,1911.13150]

Similar dependence of M_{A} on fit form extracted from experimental results. However, form factor $Q^{2} \sim 0.1-1 \mathrm{GeV}$ interesting for the neutrino expts..

Octet baryon distribution amplitudes

* Describe the distribution of the longitudinal momentum amongst the baryon constituents in the light cone (infinite momentum) frame. Like quantum mechanical wavefunction of baryon.
* Provide the nonperturbative input for the theoretical description of hard (large Q^{2}) exclusive processes: e.g. $p \rightarrow p$ em elastic form factor.

* Transition amplitude factorizes into (hard) transition amplitude and (non-perturbative) distribution amplitude

$$
G\left(Q^{2}\right)=\int d x d y \Phi\left(y, Q^{2}\right) T_{H}\left(x, y, Q^{2}\right) \Phi\left(x, Q^{2}\right)
$$

DAs are universal: involved in many processes
Electric and magnetic nucleon form factor $Q^{2} \sim 14 \mathrm{GeV}^{2}$ (JLab, FAIR)
Electric neutron form factor $Q^{2} \sim 8 \mathrm{GeV}^{2}$ (JLab, FAIR)
Electroproduction of nucleon resonances at large $Q^{2} \sim 14 \mathrm{GeV}^{2}$ (JLab)

Octet baryon distribution amplitudes

The DAs can be expanded in terms of orthogonal polynomials $P_{n k}\left(x_{1}, x_{2}, x_{3}\right)$:
$x_{1}+x_{2}+x_{3}=1$

$$
\begin{aligned}
\Phi_{+}^{B} & =120 x_{1} x_{2} x_{3}\left(\varphi_{00}^{B} \mathcal{P}_{00}+\varphi_{11}^{B} \mathcal{P}_{11}+\ldots\right), & \Phi_{-}^{B}=120 x_{1} x_{2} x_{3}\left(\varphi_{10}^{B} \mathcal{P}_{10}+\ldots\right), \\
\Pi^{B \neq \Lambda} & =120 x_{1} x_{2} x_{3}\left(\pi_{00}^{B} \mathcal{P}_{00}+\pi_{11}^{B} \mathcal{P}_{11}+\ldots\right), & \Pi^{\wedge}=120 x_{1} x_{2} x_{3}\left(\pi_{10}^{\wedge} \mathcal{P}_{10}+\ldots\right),
\end{aligned}
$$

The lower order coefficients $\phi_{n k}^{B}$ and $\pi_{n k}^{B}$ can be computed on the lattice.
[RQCD, 1903.12590] 40 ensembles: $a \rightarrow 0, m_{q} \rightarrow m_{q}^{\text {phys }}$, finite V investigated.

B	N	Σ	\bar{y}	\wedge
f^{B}	$3.54_{-4}^{+6}(2)$	$5.31_{-4}^{+5}(5)$	$6.11_{-6}^{+7}(14)$	$4.87_{-4}^{+7}(6)$
f_{T}^{B}	$3.54_{-4}^{+6}(2)$	$5.14_{-4}^{+5}(4)_{m}$	$6.29_{-7}^{+8}(16)$	
φ_{11}^{B}	$0.118_{-5}^{+6}(22)$	$0.195_{-6}^{+4}(41)$	$-0.014_{-3}^{+4}(18)$	$0.243_{-7}^{+8}(47)$
π_{11}^{B}	$0.118_{-5}^{+6}(22)$	$-0.090_{-2}^{+3}(25)$	$0.399_{-9}^{+7}(81)$	
φ_{10}^{B}	$0.182_{-14}^{+20}(7)$	$0.090_{-31}^{+11}(4)_{m}$	$0.350_{-20}^{+18}(16)$	$0.610_{-28}^{+23}(24)$
π_{10}^{B}				$0.214_{-26}^{+33}(9)$

$f^{B}=\phi_{00}^{B}$ and $f_{T}^{B \neq \Lambda}=\pi_{00}^{B}$
Strong SU(3) flavour breaking observed, e.g. normalisation constants $f^{B}, f_{T}^{B \neq \Lambda}$.

Octet baryon distribution amplitudes

Barycentric plots ($x_{1}+x_{2}+x_{3}=1$) showing deviation from asymptotic shape $\phi^{a s} \equiv 120 x_{1} x_{2} x_{3}$.
[RQCD, 1903.12590] 40 ensembles: $a \rightarrow 0, m_{q} \rightarrow m_{q}^{\text {phys }}$, finite V investigated.

Compute $\left\langle x_{i}\right\rangle$ w.r.t the distribution amplitude and cf. $\left\langle x_{i}\right\rangle^{\text {as }}=1 / 3$.
Find N, Σ, इ: q_{1} carries larger momentum fraction compared to $\left(q_{2}, q_{3}\right)$ di-quark, strange quarks carry more momentum.

Some computational details

Evaluate correlation functions:

Example of baryon at rest:
LHS: $C_{2 p t}=Z_{B} e^{-m_{B} t_{f}}+\ldots$, RHS: $C_{3 p t}=Z_{B}^{2}\langle B| \bar{q}\left\lceil q|B\rangle e^{-m_{B} t_{f}}+\ldots\right.$
Lines: quark "propagators" $M_{x y}^{-1}, M=\not D+m_{q}, 12 V \times 12 V$ matrix.
Use translational invariance \rightarrow only require 12 (spin \times colour) rows of M^{-1}.
Inversion: Adaptive algebraic multigrid solver (DD- α AMG) of Frommer et al [1303.1377].
$C_{3 p t}$ requires full M^{-1} between current and sink.
Standard approach involves fixing B and $\vec{p}_{f} \rightarrow$ computationally expensive to study baryon octet.

Some computational details

Compute M^{-1} (wavy line) stochastically \rightarrow introduces additional noise.
Diagram factorises into two parts, leave spin indices open.
$C_{3 p t}\left(\mathbf{p}^{\prime}, \mathbf{q}, x_{4}^{\prime}, y_{4}, x_{4}\right)_{\cup D U U}^{\alpha^{\prime} \alpha \beta^{\prime} \beta \delta^{\delta^{\prime} \delta} \gamma^{\prime} \gamma}=\frac{1}{N_{\text {sto }}} \sum_{n=1}^{N_{\text {sto }}} \sum_{k=1}^{3}\left(S_{U D}\left(\mathbf{p}^{\prime}, x_{4}^{\prime}, x_{4}\right)_{n k}^{\alpha^{\prime} \alpha \beta^{\prime} \beta \delta^{\prime}} \cdot I_{U U}\left(\mathbf{q}, y_{4}, x_{4}\right)_{n k}^{\delta \gamma^{\prime} \gamma}\right)$
Advantage: no additional cost for \vec{p}_{f}, moderate cost for different B.
However, large data!

Some computational details

Use HDF cloud and on JUST in /largedata/ + archive.
\star Typical size of data ~ 50 TB.

* Store in Jülich.
* Strip data for current analysis on 2 virtual machines (16 CPUs with 32 GB each).
\star Transfer to Regensburg for analysis (>2 PB local storage).

Summary

- Lattice QCD input is essential to achieve the full potential of many current and future experiments searching for hints of beyond the Standard Model interactions.
- Certain limits need to be taken in Lattice QCD: $m_{q} \rightarrow m_{q}^{\text {phys }}, V=a^{4} N_{t} N_{s}^{3} \rightarrow \infty, a \rightarrow 0$.
- Full exploration of these limits is achieved by employing CLS ensembles.
- In particular, the quark mass dependence: simulate both $m_{u, d}=m_{s}$ and $m_{u, d} \neq m_{s}$.
- Many results for the baryon octet: mass spectrum, sigma terms, axial charges, scalar and tensor charges, quark momentum fractions, axial form factors, electromagnetic form factors, distribution amplitudes.
- Determine the size of $\operatorname{SU}(3)$ flavour breaking \rightarrow test assumptions made in phenomenological analyses.
- Investigating flavour symmetric theory \rightarrow determination of ChPT LECs.

