Sub-grid Scale Modeling at Scale with Deep Learning and up to 60 Billion Degrees of Freedom

M. Bode¹, <u>D. Denker</u>,¹ J. Jitsev², H. Pitsch¹

¹Institute for Combustion Technology RWTH Aachen University

²Institute for Advanced Simulation Juelich Supercomputing Center

- Thanks for assistance: Zeyu Lian, Michael Gauding, Marco Davidovic, Lukas Berger
- Thanks for funding by ERC "MILESTONE"
- Thanks for computing time on JURECA (JHPC55) and JUWELS (JHPC09)

US DOE's International Energy Outlook 2019

World Energy Consumption

- Increase in world wide energy consumption from 2018 until 2050: 50%
- Fossil fuels > 70% by 2050

Large numbers

3

- I 20 million tons
 CO₂ emissions daily in 2040
 I 3 kg per person daily
- I0 billion liter daily fuel consumption
 I.3 liter liquid fuel use daily

Primary energy consumption by energy

Institute for Combustion Technology | Dominik Denker

• Source: EIA's International Energy Outlook, 2019

Introducing New Renewable Fuels

Opportunity: Fuel Design

- Biofuels, E-fuels \rightarrow Biohybrid fuels
- Design fuel molecules for optimized behavior
 O High efficiency by tailored reactivity
 - $\,\circ\,$ Low emissions

Challenge: Engine/Fuel Compatibility

- Different properties
 - $\circ~$ Injection system needs to redesigned
 - $\circ~$ Combustion process needs to be redesigned
- Joint optimization process of engine and fuel

The Fuel Science Center

→ Quantitative, accurate, fast models relating fuel structure to performance criteria

Motivation

Turbulent Combustion

- Simultaneous optimization of efficiency, emissions and combustion stability
- New technologies:
 - \circ Aircraft engines
 - Lean direct injection (LDI)
 - $\circ~$ Internal Combustion Engines
 - Homogeneous charge compression ignition, Controlled auto-ignition (HCCI, CAI)
 - Downsizing with supercharging
 - Power Generation
 - Oxy-Combustion
 - Integrated gasification combined cycle (IGCC)
 - Flameless Oxidation (FLOX)

Technology development fundamentally relies on a good understanding of turbulence and of turbulent combustion.

Characteristics of Turbulence:

Direct Numerical Simulations

- **Problem:** lack of analytic results in turbulence ٠ research
- Two approaches:
 - I. Experiments
 - large Reynolds numbers *Re* achievable +
 - difficult to obtain full 3D fields of large fluid volumes
 - only indirect / impossible measurement of important quantities
 - 2. Direct Numerical Simulations (**DNS**)

Solving the full Navier-Stokes equations for all physically relevant scales.

- directly obtaining all relevant quantities
- perfect control of initial and boundary conditions
- very high computational costs

Reynolds numbers encountered in engineering applications not feasible

- Concessions to the numerical setup must be made

Turbulent Mixing

What makes turbulence important for combustion?

- Prerequisite for combustion: molecular mixing of fuel and oxidizer.
- Turbulence: added advective transport greatly enhances molecular mixing.
- Fun facts:
 - Without turbulent mixing,
 - combustors in aircraft engines would exceed **100m** in length,
 - Passenger car internal combustion engines would be limited to **500** rpm.

Scale Interaction Between Turbulence and Combustion

designing DNS specifically for these conditions

DNS of Reacting Flows

- Direct Numerical Simulations of reacting flows
- All flow scales need to be resolved:
 - $\circ~$ Domain size needs to extend several $l_{\rm t}$ to capture large scale flow characteristics
 - \circ Computational grid needs to be fine enough to resolve η
- All flames scales need to be resolved:
 - Simplified chemical mechanism must capture important features such as extinction and re-ignition
 - Reaction layers must be spatially resolved at all times

Reacting DNS more than an order of magnitude more expensive than non-reacting DNS of similar Reynolds number

*l*_t significantly smaller than in real world engineering applications.

Governing Equations – Numerical Methods

• Using the in house developed flow solver CIAO to solve the reacting Navier-Stokes equations in the low-Mach limit.

 $\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x_{\beta}} \left(\rho u_{\beta} \right) = 0,$ Continuity: $\frac{\partial \rho u_{\alpha}}{\partial t} + \frac{\partial}{\partial r_{\alpha}} \left(\rho u_{\alpha} u_{\beta} \right) = -\frac{\partial \Pi}{\partial r} + \frac{\partial \tau_{\alpha\beta}}{\partial r_{\alpha}},$ Momentum: $\frac{\partial \rho Y_i}{\partial t} + \frac{\partial}{\partial r} \left(\rho \left(u_\alpha + V_{\alpha,i} \right) Y_i \right) = \dot{m}_i,$ Species: Temperature: $\frac{\partial \rho c_p T}{\partial t} + \frac{\partial}{\partial x_{\alpha}} \left(u_{\alpha} \rho c_p T \right) = \frac{\partial}{\partial x_{\alpha}} \left(\lambda \frac{\partial T}{\partial x_{\alpha}} \right) + \rho \frac{\partial T}{\partial x_{\alpha}} \sum_{i=1}^{n} c_{p,i} Y_i V_{i,\alpha} + \sum_{i=1}^{n} h_i \dot{m}_i + \dot{q}_R.$ Split of Strang $\mathcal{F}_{dt}^{\mathrm{C}}: \begin{cases} \frac{\partial \rho Y_{i}}{\partial t} = \dot{m}_{i} \\ \frac{\partial \rho c_{p} T}{\partial t} = \sum_{i}^{n} h_{i} \dot{m}_{i}. \end{cases} \mathcal{F}_{dt}^{\mathrm{Trans}}: \begin{cases} \frac{\partial \rho I_{i}}{\partial t} + \frac{\partial}{\partial x_{\alpha}} \left(\rho \left(u_{\alpha} + V_{\alpha,i}\right) Y_{i}\right) = 0 \\ \frac{\partial \rho c_{p} T}{\partial t} + \frac{\partial}{\partial x_{\alpha}} \left(u_{\alpha} \rho c_{p} T\right) = \frac{\partial}{\partial x_{\alpha}} \left(\lambda \frac{\partial T}{\partial x_{\alpha}}\right) + \rho \frac{\partial T}{\partial x} \sum_{i}^{n} c_{p,i} Y_{i} V_{i,\alpha} + \dot{q}_{R}. \end{cases}$ $\mathcal{F}_{dt}\left(Y_{i}^{m},T^{m}\right)=\mathcal{F}_{dt/2}^{\mathrm{Trans}}\mathcal{F}_{dt}^{\mathrm{C}}\mathcal{F}_{dt/2}^{\mathrm{Trans}}\longrightarrow\left(Y_{i}^{m+1},T^{m+1}\right)$

- Crank-Nicolson time advancement
- Fourth order accurate finite differences
- Poisson equation for the pressure solved with HYPRE AMG
- Species and temperature eqs. discretized with fifth order WENO
- Chemistry ODE solved with
 Sundials CVODE

Split of Computational Costs

- Computational costs of reacting DNS
- TG simulation time per time step and grid point
- The two most computationally expensive steps:
 O Chemistry
 - $\circ\,$ Scalar Transport
- Solving the Poisson equation is significantly more expensive than in constant density flows.

Number of Processors

16392

DNS of Non-Premixed Jet Flames

- Configuration: planar temporally evolving jet.
- Advantages:

- Fuel
- maximized flame surface
- ease of obtaining statistics
- Chemistry included via Finite-rate chemistry
- Chemical Mechanism features 30 species and 102 reactions
- Fuel: highly diluted methane

DNS of Non-Pemixed Jet Flames

- Iso-surface of the stoichiometric mixture fraction Z_{st} :
 - $\,\circ\,$ Optimal mixture between fuel and oxidizer
 - \circ Most probable position of combustion
- Local color indicates the concentration of short lifed species formed in the reaction zone.

DNS of an Engineering Application

Estimate for the computational costs of "realistic" engine conditions on state-of-the-art super computer

Baseline case: Hi Re Case $Re \approx 10,000$, $K = 1.5 \cdot 10^7$ CPU-H on JUWELS

I. Reynolds number in internal combustion engine $Re \approx 100,000$ Cost increase due to scale separation and consequent higher grid resolution: $\left[(100,000)^{\frac{3}{2}}\right]^{4}$

$$K' = K \cdot \left[\left(\frac{100,000}{10,000} \right)^{\frac{3}{4}} \right] = 1.5 \cdot 10^{10} \text{ CPU-H}$$

- 2. Gasoline fuel with full chemical mechanism instead of Methane with skeletal chemical mechanism (3000 Species instead of 30 6000 reactions instead of 102): $K'' = K' \cdot \frac{3000}{30} = 1.5 \cdot 10^{12}$ CPU-H
- 3. Non-idealized flow configuration, several iterations (n ~ $10^2 10^3$) needed for statistical convergence: $K_{\text{engine}} = K'' \cdot n = 1.5 \cdot 10^{14} \text{ CPU-H}$

Not feasible in the near future!

Large Eddy Simulations (LES)

How to simulate turbulent combustion (state-of-the-art)?

- Simulate only the large, flow-dependent scales "Large Eddies".
- Classical approach: exploit universalities in the small scales in statistical models for the "Sub Grid Scales" (SGS)
- SGS models insufficiently capture the highly non-linear interaction between chemistry and fine scale mixing.
- Solution:

Deep Learning - Generate realistic, three-dimensional, and fully resolved turbulent fields

Large Eddy Simulation of Non-Premixed Flame

1853

domain in the crosswise direction is

DNS

LES

 $\frac{2}{x/H}$

n Technology | Dominik Denker

Challenges for Artificial Neural Network Training

- Up to 1.2 TB of data generated in each time step
- 10.000 12.000 time steps for each DNS case

> More than 600 TB of data from reacting DNS alone

GPU Partitions

CLAIX

- 4 GPU nodes on CLAIX18
 - \circ Platinum 8160 processor
 - $\circ~2$ Nvidia V100-SXM2 GPUs / node
 - 384GiB memory / node

JURECA

- 1872 compute nodes
 - $\,\circ\,$ 75 nodes equipped with 2 Nvidia K80 GPUs / node
 - o 2 x 4992 CUDA cores
 - \circ 2 x 24 GiB GDDR5 memory

CLAIX

JURECA

19

Deep learning at scale

Keras

Deep Learning Framework Power Scores 2018

100-96.77 80 60 Score 51.55 40 22.72 20 17.15 12.02 8.37 4.89 3.65 2.71 TensorFlow Keras PyTorch Carro MXNET Fastar Framework

High-level API for fast neural network prototyping

- Could be built on different backends, e.g. tensorflow, CNTK or Theano
- Most frequently used API for various projects
- Optimal distributed training through first-class support by Horovod
- More developer friendly than other APIs

20

- model = Sequential() model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3))) model.add(MaxPool2D()) model.add(Conv2D(16, (3, 3), activation='relu'))
- model.add(MaxPool2D())
- model.add(Flatten())
- model.add(Dense(10, activation='softmax'))

PyTorch

Deep learning at scale

TensorFlow-GPU

- End-to-end open source platform for building and training machine learning models with GPU support
 - o Pros: Low-level tools, flexibility in model features, best library management
 - Cons: Complex implementation, weak benchmarking
- Distributed TensorFlow

21

- TensorFlow supports distribution on multiple CPU/GPUs
- Standard distribution package: workers, parameter servers, tf.Server(), tf.ClusterSpec(), tf.train_replicas_device_setter()...
- \circ These distribution operations introduce hard-to-diagnose bugs \rightarrow slows training

I. Communication cost rapidly grow for increasing GPUs 2. Server must wait for till all GPUs finish \rightarrow ideling

Deep learning at scale

Horovod

Uses Ring-Allreduce model := All-scatter+All-gather

$\,\circ\,$ Improves the scaling efficiency from 50% to 90% for both Inception V3 and ResNet-101

Gradients

Gradients

Challenges

- Communication
 - $\circ~$ Bottleneck on first rank
 - Communication tree with recursive broadcast
- I/O

 $\circ~\mbox{GPFS}$ speed limited

- $\,\circ\,$ Distributed data staging
- Point-to-point MPI

Nodes	Ideal [TFLOPS]	Before [TFLOPS]	After [TFLOPS]
1	30	30	30
10	300	291	290
50	1500	702	1480
75	2250	1003	2023

2 Data-Driven Turbulence Modelling Approaches

- Regression: Fully Connected Artificial Neural Network to predict certain turbulence parameters using other parameters
- 2) Reconstruction: Artificial Neural Network to reconstruct fully resolved, DNS turbulence fields from low resolution data.

25

20

15

10

Reconstruction

GAN (Generative adversarial networks)

- What is GAN:
 - GAN includes a generator and a discriminator
 - Generator: captures data distribution, tries to produce
 - "real" samples that would hopefully fool the discriminator
 - Discriminator: judges whether the input sample is genuine or "faked" produced by the generator
- Why GAN:
 - It is generative
 - Important for unsupervised learning
 - GAN maps one probability distribution to another

Structure demonstration of GAN

• Network structure

Generator

Reconstruction

PIESRGAN (physics-informed enhanced super-resolution GAN)

- Derived from the 2D image ESRGAN framework
 - Uses convolutional layers for feature (turbulence eddies) extraction
 - We use the DNS data, and its filtered data as inputs. The data includes e.g.:

velocity	passive	velocity	Reynolds	filter	dissipation
components	scalar	gradients	number	width	rate

- Applies a residual-in-residual dense block (RRDB) in the generator model,

which greatly increases the model complexity through jump communications

- A noval concept for the cost function: physical-based loss
- I. For passive scalar: MSE-loss of the gradient field

$$l_{grad} = \frac{1}{N_{sample}} (\nabla_{x_i} \phi_{true} - \nabla_{x_i} \phi_{pred})^2$$

2. For velocity reconstruction: continuity loss

$$l_{conti} = \frac{1}{N_{sample}} (\nabla \cdot \phi_{pred})^2$$

2D ESRGAN validation (L)orignal LR (M) bilinear (R) ESRGAN

Reconstruction

PIESRGAN

• Result visualization

0.8

A posteriori testing

Validation of the results: energy spectrum

- Energy spectrum provides scaledependent validation of the accuracy of the PIESRGAN
- Filtered (LES) solution lacks information at the small scales, which is provided BY the PIESRGAN
- PIESRGAN is able to predict smallscale turbulence and close the LES equations

Information about SGS is provided by PIESRGAN

Turbulence

- Application of PIESGAN-SGS model for LES of decaying turbulence
- Good agreement of statistics
- Questions:
 - Using this model for higher Reynolds number?
 - $\circ\,$ Performance in multi-physics cases?

DNS:40963 grid pointsLES:643 grid points

Spray case

- Application of PIESRGAN-SGS model for LES of decaying turbulence
- Application of 5-Layer Dense ANN for chemistry
- Reduction of computing time to 57%
- Ignition delay times: 0.435 ms (SGS) vs. 0.421 ms (PIESRGAN-SGS)
- Flame lift-off: 13.4 mm (SGS) vs. 13.1 mm (PIESRGAN-SGS)

Conclusions

- Motivation and introduction to turbulent combustion
- Generation of DNS Combustion data explained
- Deep learning at scale is possible if bottlenecks are removed
- PIESRGAN as network for modeling introduced
- A posteriori testing results show good accuracy

Thank you for your attention

Dominik Denker

Institute for Combustion Technology RWTH Aachen University

http://www.itv.rwth-aachen.de

