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US DOF’s International Energy Outlook 2019

World Energy Consumption

* Increase in world wide energy

consumption

from 2018 until 2050: 50%
* Fossil fuels > 70% by 2050

Large numbers

* 120 million tons
CO2 emissions daily in 2040

|3 kg per person daily

* 10 billion liter daily fuel consumption

|3 liter liquid fuel use daily

Primary energy consumption by energy

source, world
quadrillion British thermal units
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Introducing New Renewable Fuels

Tailor-Made Fuels from Biomass

Opportunity: Fuel Design

* Biofuels, E-fuels = Biohybrid fuels - ‘

* Design fuel molecules for optimized behavior
o High efficiency by tailored reactivity

o Low emissions

Challenge: Engine/Fuel Compatibility

* Different properties

o Injection system needs to redesigned

o Combustion process needs to be redesigned
* Joint optimization process of engine and fuel

- Quantitative, accurate, fast models relating fuel structure to performance criteria
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Motivation

Turbulent Combustion

* Simultaneous optimization of efficiency, emissions and combustion stability
* New technologies:

o Aircraft engines —
= Lean direct injection (LDI) Technology development fundamentally relies
o Internal Combustion Engines on a good understanding of turbulence and of
« Homogeneous charge turbulent combustion.

compression ignition,
Controlled auto-ignition
(HCCI, CAl)

= Downsizing with supercharging
o Power Generation
=  Oxy-Combustion
= Integrated gasification
combined cycle (IGCC)
= Flameless Oxidation (FLOX)
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Turbulence — a very Brief Introduction

Characteristics of Turbulence:

. Randomness
Energy Spectrum Energy Cascade
2. Multi-Scale Energy Density Production
~[‘
3. Non-Linear |og(E)
A
4.  Three-Dimensionality QOOQ Energy
Transfer
QOO
5. Vorticity DOOO
(oo o ple @lole e o al=tole’= I ls @ o0
6. Non-Gaussian  /
> IOg(h) ~n Dis;is:iion of
/—1 -1 N gy
7. Non-Local t Ji
Wave Number
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Direct Numerical Simulations

* Problem: lack of analytic results in turbulence
research

e Two approaches:

Experiments

+ large Reynolds numbers Re achievable

- difficult to obtain full 3D fields of large fluid volumes

- only indirect / impossible measurement of
important quantities

Direct Numerical Simulations (DNS)

Solving the full Navier-Stokes equations for all physically
relevant scales.

+ directly obtaining all relevant quantities

+  perfect control of initial and boundary conditions

- very high computational costs

log(E)

le/n ~ Re4

< >log (k)
. . . . . . /_1 ——— | —1
Reynolds numbers encountered in engineering applications not feasible t 4 /
: . —) |
- Concessions to the numerical setup must be made /
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Turbulent Mixing

What makes turbulence important for combustion?

* Prerequisite for combustion:

molecular mixing of fuel and Q
oxidizer.
; Flame Surf
* Turbulence: added advective <Afusion “ QC‘O & vy Temesret
transport greatly enhances
o i O 5
molecular mixing.
e Fun facts: fuel oxidizer + Q Q — \"\
Without turbulent mixing, diffLsi O O v
iffusion ?
— combustors in aircraft engines Q Q O D
. S—
would exceed 100m in length, G

— Passenger car internal combustion

engines would be limited to 500 9
rpm.
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Scale Interaction Between Turbulence and Combustion

Fuel V)
ORI -
AI’ /gd f
Adequate

combustion (\/) X

model exists:

N <l

|

New advanced combustion technologies rely on dilutions of either fuel or
oxidizer. Consequently, [r increases and the combustion takes place in conditions
that are not well understood.

mm) designing DNS specifically for these conditions
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DNS of Reacting Flows

* Direct Numerical Simulations of reacting flows

* All flow scales need to be resolved:

o Domain size needs to extend several [; to capture large |Og( E)

e Scales of importance
scale flow characteristics A P

to the interaction with

combustion
* All flames scales need to be resolved: 1

o Computational grid needs to be fine enough to resolve

o Simplified chemical mechanism must capture important
features such as extinction and re-ignition

o Reaction layers must be spatially resolved at all times
\ J

Reacting DNS more than an order of magnitude more expensive l./n ~ Re%
than non-reacting DNS of similar Reynolds number S

mmm) [, significantly smaller than in real world k ‘/_1_: 7)

engineering applications. t
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Governing Equations — Numerical Methods

* Using the in house developed flow solver CIAO to solve the reacting Navier-Stokes equations in the low-Mach limit.

Continuity: Op + 2 (pug) =0, : - :
ot Jzga Hi/Q
. | -
Momentum: 8pua + i (pu u ) _ ' + 87_045 2015
ot oxg P 0To = Oxg’ X /
. opY; 0 . R
Species: gt 5 (0 (o + Vo) Yi) = 1

* Crank-Nicolson time advancement

. Opc, T 0 ) oT T . ,
Temperature: + = (Uapc,T) = - ()\ ) + o ; Cp,iYiVia + ; hir; + ¢r-

ot  Oxa Oza \ O%a — * Fourth order accurate finite differences
K— Split of Strang * Poisson equation for the pressure solved
with HYPRE - AMG
opY; . 9pY; 0 _ . . .
. £t =i PN I RS (p (e + Vai) Yi) = 0 * Species and temperature egs. discretized
Fit : n "\ 9pe, T 0 o (.0r T & ith fi
3P;§T _ ;himz p(;;) + % (uapcpT) _ % )‘5%) + p% Z; piYiVio + R Wlth flfth OI"deI" WENO
‘ ¢ Chemistry ODE solved with

Sundials CVODE

]:dt (Y;m, Tm) _ fg‘tr/azns‘/—_"gf(}‘tr/azns N (Y'ierl7 Tm+1)
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Split of Computational Costs

« Computational costs of reacting DNS 10000
9000
. 3 . . . 8000
* TG — simulation time per time step and grid 2000
point % 6000
:
2 5000
* The two most computationally expensive steps: (%‘ 4000
. =
o Chemistry 3000
o Scalar Transport 2000
1000
* Solving the Poisson equation is significantly more 0

expensive than in constant density flows.

2048 4608 8192 16392

Number of Processors

Scalar transport
Chemistry
Momentum I
Pressure
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DNS of Non-Premixed Jet Flames

» Configuration:
planar temporally evolving
jet.

* Advantages: Fuel ‘

— maximized flame surface
— ease of obtaining statistics

. . . " | 15 Mio CPU-h . .
* Chemistry included via on JUQUEEN || on JUWELS _ Oxidizer
Finite-rate chemistry ~>
4 AY4 N
. . Low Re Low Re Intermediate | High Da] | High Re
[ ]
Chemical Mechanism low dilution  high dilution Re case case case
features 30 species and case case
: Rejer 0 4500 4500 6000 6000 || 10000
102 reactions Da., 0.125 0.150 0.150 0.450 || o0.150
Zt 0.20 0.45 0.45 0.45 0.45
1 1 ridpoints 1 9 A4 . . 1. 1.2
* Fuel: highly diluted methane e [tw[g]o | 015 213 25 6(? 45
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DNS of Non-Pemixed Jet Flames

* |so-surface of the stoichiometric mixture
fraction Zg:

o Optimal mixture between fuel and oxidizer

o Most probable position of combustion

* |Local color indicates the concentration of
short lifed species formed in the reaction
Zone.
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DNS of an Engineering Application

Estimate for the computational costs of ‘“realistic”’ engine conditions on state-of-the-art super computer

Baseline case: Hi Re Case Re =~ 10,000, K = 1.5-107 CPU-H on JUWELS

. Reynolds number in internal combustion engine Re =~ 100,000

Cost increase due to scale separation and consequent higher grid resolution:
3.4

K' =K- [(1"0'000)1] = 1.5-101° CPU-H

10,000

2. Gasoline fuel with full chemical mechanism instead of Methane with skeletal chemical mechanism

(3000 Species instead of 30 — 6000 reactions instead of 102):

K" =K' % —1.5-10'2 CPU-H

3. Non-idealized flow configuration, several iterations (n ~ 104 — 103) needed for statistical convergence:
Kengine = K" -n=1.5-10"* CPU-H

-

Not feasible in the near future!
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Large Eddy Simulations (LES)

How to simulate turbulent combustion (state-of-the-art)?

* Simulate only the large, flow-dependent scales
“Large Eddies”.

* Classical approach: exploit universalities in the small
scales in statistical models for the “Sub Grid Scales”

(SGS)

* SGS models insufficiently capture the highly non-linear
interaction between chemistry and fine scale mixing.

Scales of importance
to the interaction with
combustion

\ 4

resolved modelled
e Solution: 5 Iog(/f)
Deep Learning - Generate realistic, three-dimensional, [t It n~1
and fully resolved turbulent fields
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Large Eddy Simulation of Non-Premixed Flame

DNS LES
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Challenges for Artificial Neural Network Training

* Up to |.2TB of data generated in each time step

* 10.000 — 12.000 time steps for each DNS case

> More than 600 TB of data
from reacting DNS alone
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Deep learning at scale

GPU Partitions

CLAIX
* 4 GPU nodes on CLAIXI8

o Platinum 8160 processor

o 2 NvidiaV100-SXM2 GPUs / node
o 384GiB memory / node

JURECA

* 1872 compute nodes
o 75 nodes equipped with 2 Nvidia K80 GPUs / node
o 2 x 4992 CUDA cores
o 2 x 24 GiB GDDR5 memory
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Deep learning at scale

Keras

* High-level API for fast neural network prototyping

o Could be built on different backends, e.g. tensorflow, CNTK or Theano

Deep Learning Framework Power Scores 2018

100 96.77

o Most frequently used API for various projects g @
8
]
o Optimal distributed training through first-class support by Horovod N
o More developer friendly than other APIs 20 S
T am e 271 118 1.06
Yo A Cop e My, Com Chy Fam
eq%h9 “ag ‘}nhhb Ve bﬁ%b Aun@) Chz? Chﬁyea 00&3 Q%mb QQ?[
Keras PyTorch o Framework "4,
model = Sequential () class Net(nn.Module):
model.add (Conv2D (32, (3, 3), activaticn='relu', input_shape=(32, def _ init (self):
model.add (MaxPool2D()) super (Net, self)._ dinit_ ()
model.add (Conv2D (16, (3, 3), activation='relu')) self.convl = nn.Conv2d (3, 32, 3)
model .add (MaxPool2D () ) self.conv2 = nn.Conv2d (32, 16, 3)
model.add (Flatten()) self.fcl = nn.Linear (16 * € * 5, 10)
model .add (Dense (10, activation='softmax')) self.pool = nn.MaxPool2d(2, 2)
def forward(self, x):
x = self.pool (F.relu(self.convl (x)))
x = self.pool(F.relu(self.conv2(x)))
X = X.view(~1, 16 * 6 * &)
x = F.log_softmax(self.fcl(x), dim=-1)
return x
medel = Net()
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Deep learning at scale

TensorFlow-GPU

* End-to-end open source platform for building and training machine
learning models with GPU support

PS Broadcast model

o Pros: Low-level tools, flexibility in model features, best library management Aggregate

o Cons: Complex implementation, weak benchmarking
Distributed TensorFlow

Gradients

o TensorFlow supports distribution on multiple CPU/GPUs

o Standard distribution package: workers, parameter servers, tf.Server(),
tf.ClusterSpec(), tf.train_replicas_device_setter()...

o These distribution operations introduce hard-to-diagnose bugs—>slows training

Training with synthetic data on NVIDIA® Pascal™ GPUs
18,000.0
16,000.0

v om0 I. Communication cost rapidly grow for increasing GPUs
12,000.0 2. Server must wait for till all GPUs finish = ideling
10,000.0
8,000.0
6,000.0
4,000.0
e i B = ;
8 16 32 (2] 128 1 8 16 32 [ 128

Images/sec

0.0
1

Inception V3 ResNet-101
Number of GPUs and model name

™ Distributed TensorFlow Olideal
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Deep learning at scale

Horovod
* Package to speed-up distributed deep learnings

o Uses Ring-Allreduce model :=

All-scatter+All-gather

’ ’ ’ -

e ‘—] T e e - i Ee )

T T L N N L | [ [ = ey |

~[![\[.]~] ‘**I*‘l"l*l“i*] -I‘““‘I* “i‘*‘*‘*l

— ! — -l.,i_l.-.] S B B ===

e e Bl === -""i“‘”‘“‘““' =T =]
All-scatter

- =

T T ey

- e e e reeeey T

All-gather

| T ey m——

/m wdiems

Gradients

m/sradicms
g radients
Gradients GPU 5 /

GPU 7

Gradients

o Improves the scaling efficiency from 50% to 90% for both InceptionV3 and ResNet-101

Training with synthetic data on NVIDIA® Pascal™ GPUs

Training with synthetic data on NVIDIA® Pascal™ GPUs

18,000.0 £0,000.0
16,000.0 70,000.0
14,000.0 60,000.0
g 12,0000 § 50,0000
E 10,000.0 g 40,000.0
§ ®oooo £ 30,0000
= 60000
20,000.0
S al l
2°°zz “ﬁi 00 _-- _—- E-E
8 16 32 64 128 128 s
Inception V3 ResNet-101 Inception V3 ResNet-101 VGG-16
Number of GPUs and model name Number of GPUs and model name
¥ Distributed TensorFlow ™ Horovod Ollideal ¥ Horovod (TCP) ® Horovod (ROMA) Olideal
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Deep learning at scale

Challenges

e Communication

o Bottleneck on first rank

o Communication tree with recursive

Ideal Before After
[TFLOPS] [TFLOPS] [TFLOPS]
I 30 30 30

broadcast
10 300 291 290
* |/O
o GPFS speed limited 50 1500 702 1480
o Distributed data staging
o Point-to-point MPI 75 2250 1003 2023
23 Institute for Combustion Technology | Dominik Denker m
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Modelling

2 Data-Driven Turbulence Modelling Approaches

|) Regression: Fully Connected Artificial Neural Network to Turbulence
predict certain turbulence parameters using other Modelling
parameters |
| |
. . . . R o
2) Reconstruction: Artificial Neural Network to reconstruct Regression sconstruction

fully resolved, DNS turbulence fields from low resolution
data.

DNS data

Sij2 field

150 200

0 S0 100 150 200 %0
W 8 kc_1

ke 8 Filtered Data  kc_16 Filtered Data DN Data
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Reconstruction

GAN (Generative adversarial networks)
* What is GAN:
GAN includes a generator and a discriminator
- Generator: captures data distribution, tries to produce TaningOata
“real” samples that would hopefully fool the discriminator E
- Discriminator: judges whether the input sample is genuine “ II
or “faked” produced by the generator Il

4

- Why GAN: e
Generated Image

- It is generative

Latent Sample

- Important for unsupervised learning

- GAN maps one probability distribution to another
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Reconstruction

 Network structure
Generator

RRDB

k3n64s1 k3n1s1

SR
DNS

The convolution allows for the consideration
DNS

of the multi-scale nature of turbulence
Discriminator

Input
| DNS

-
o
-
e
Q
Q
()
—
(-
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Reconstruction

PIESRGAN (physics-informed enhanced super-resolution GAN)
* Derived from the 2D image ESRGAN framework

- Uses convolutional layers for feature (turbulence eddies) extraction

- We use the DNS data, and its filtered data as inputs. The data includes e.g.:

velocity passive | velocity | Reynolds | filter | dissipation
components | scalar | gradients | number width | rate

- Applies a residual-in-residual dense block (RRDB) in the generator model,

which greatly increases the model complexity through jump communications

- A noval concept for the cost function: physical-based loss
|. For passive scalar: MSE-loss of the gradient field

tyrai = X ~(VierPriuis = Vit Bpiea)
" Nowite 5. V. P
2. For velocity reconstruction: continuity loss
1 2
lCan-i B Nsamptc (V . ¢Pred) 2D ESRGAN validation
(L)orignal LR (M) bilinear (R) ESRGAN
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Reconstruction

PIESRGAN 0.8
e Result visualization '
. 0.6
Filtered PIESGAN DNS
0 0 0
0.4
50
40.2
100
150 4 0.0
200 -0.2
250 -0.4
0O 50 100150200250 0O 50 100150200250 O 50 100150200250
2D Slice of the 3D PIESRGAN Results —0.6
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A posteriori testing

Sub-filter modeling

* Unclosed terms in
filtered equations, for

example SGS transport 0
of the mixture fraction: 50
auaZ =? B 100

0xp Z Z

s 150 Uy

200
250
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Validation of the results: energy spectrum

* Energy spectrum provides scale-
dependent validation of the accuracy

of the PIESRGAN 1072 &

* Filtered (LES) solution lacks

information at the small scales, which :
is provided BY the PIESRGAN 1074 ¢

* PIESRGAN is able to predict small-
scale turbulence and close the LES 6
equations 10—

10=8—
Information about SGS is provided /0/10

by PIESRGAN
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A posteriori testing

Turbulence

° App|ication of PIESGAN-SGS model zi;:t.l‘rpu‘r_0000000010.h5

ar: ps/ps_01
—2.00

for LES of decaying turbulence

* Good agreement of statistics

* Questions:

o Using this model for higher Reynolds

, — ex
number? 102 L % kg SR
~N
o Performance in multi-physics cases? 1073 + °H 3
€R
| Ll 1
g;?(ﬂﬂrgsodu?;?;l‘57 2019 tStaI‘t tﬁnal
Time
DNS: 40963 grid points
LES: 643 grid points
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A posteriori testing

Spray case f 1115 ;s ASOI

Application of PIESRGAN-SGS model for LES of decaying
turbulence

Application of 5-Layer Dense ANN for chemistry

Reduction of computing time to 57%
lgnition delay times: 0.435 ms (SGS) vs. 0.421 ms (PIESRGAN-SGS)
Flame lift-off: 13.4 mm (SGS) vs. |3.] mm (PIESRGAN-SGS)
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Conclusions

Motivation and introduction to turbulent combustion

Generation of DNS Combustion data explained

Deep learning at scale is possible if bottlenecks are
removed

PIESRGAN as network for modeling introduced

A posteriori testing results show good accuracy
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Thank you for your attention

Dominik Denker

Institute for Combustion Technology
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