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OVERVIEW PRESENTATION

• HPSC-TerrSys and HPC in Earth System Modelling

• Introduction to Terrestrial Systems Modelling Platform (TSMP)

• Introduction to data assimilation

• Data assimilation with TSMP; three examples at different scales

• Conclusions
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TERRESTRIAL SYSTEM

Aim: Close water, energy and biogeochemical cycles
from bedrock to upper atmosphere



TERRESTRIAL SYSTEM: SOME GOVERNING EQUATIONS
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DEVELOPMENTS IN EARTH SYSTEM MODELLING

Convection permitting, “hyper” resolution (added 
value), short output intervals, big data volumes

Shrestha et al. (2014, Mon Weather Rev)

Multiphysics, fully coupled
(regional) model systems
(“Earth system simulator”)

• Towards extreme scaling, global 1km resolution, fully coupled
• Contribution to a more integrated Earth system science approach



DEVELOPMENTS IN EARTH SYSTEM MODELLING

https://www.earthsystemcog.org

Increasing domains (multi-scale 
processes, AMR), data
synthesis, new data types

Collins et al. (2013, IPCC WG1 AR5)

Data assimilation (uncertainties), long 
integration times, increasing ensemble sizes

• Hardware / HPC developments (e.g., GPUs, schedulers); algorithms (e.g., 
solver libraries, memory usage); new software / development paradigms 
(“separation of concerns” via DSLs, in-situ, compression, etc.)
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• Highly modular, massively parallel regional Earth system model, 
extensively profiled.

• Open source code from GitHub (https://github.com/HPSCTerrSys/TSMP)  
under MIT license, including documentation, pre- and post-processing 
tools, example test cases.

• It is ported on JURECA and JUWELS, DKRZ-Supercomputer MISTRA and 
can be ported easily on a single x86 workstation (PC or laptop). Ported 
using GCC and Intel compilers and MPI implementations. 

• Also available through a Linux virtual machine, with ready-to-run TSMP 
environment for a TSMP-PDAF data assimilation tutorial test case.

TSMP

https://github.com/HPSCTerrSys/TSMP


WHY ARE EARTH SYSTEM MODEL PREDICTIONS UNCERTAIN?

• Model structural errors, for example:
• Richards equation in land surface models
• Soil respiration in land surface models: simple black-box concept

• Parameter errors, for example:
• Soil hydraulic parameters like saturated conductivity
• Ecosystem parameters like rooting depth

• Model forcings (for land surface-subsurface), for example: 
• Precipitation
• Shortwave radiation

• Initial conditions, for example:
• Initial states of atmosphere like pressure and temperature
• Soil moisture content



EXAMPLE SUBSUFACE HETEROGENEITY

Subsurface heterogeneity could look like this:

5 km



EXAMPLE SUBSUFACE HETEROGENEITY

….. and typically we have limited information:

5 km

Measurement points



ENSEMBLE MODEL CALCULATIONS

• Many sources of (considerable) uncertainty 

• Non-linear governing model equations

• Use of mean initial conditions, mean parameter values, mean forcings
does not give best estimate of output variables, and of limited value

• Ensemble modelling approach important (not only in geo-sciences)

• Increases requirements for compute resources and parallelization as 
model runs are X-times repeated (e.g. two parallelization layers)

• Ensemble model runs often at lower spatial resolution



DATA CAN REDUCE UNCERTAINTY
• SYNOP, BUOY, vertical soundings, commercial aircraft, large number

of meteorological satellites: ~8 million data per timestep used to
correct atmospheric model predictions (data assimilation)

• Much less data available for subsurface: large network
of groundwater wells – data spread over institutions

• River discharge data: long time series, but network is reduced

• Networks on soil moisture, land surface fluxes (FLUXNET), ecology
(eLTER) established more recently, in last decades

• Increasing number of satellite products available like SMOS and
SMAP for soil moisture, MODIS for various variables 
of interest, GRACE for total water storage, ….



COMBINING MODEL AND DATA

Sequential approaches
(Markov Assumption)

Batch approaches

Gaussian
approximation

Kalman Filters (KF, EKF, 
EnKF, and many
variants)

Iterative smoothers

Variational DA

No Gaussian
approximation

Particle Filters Markov Chain Monte 
Carlo



ENSEMBLE KALMAN FILTER

( ) ttt M wqpxx += − ,,1

tt vHxy +=

Prediction equation: the model prediction
x = vector with model states
p = vector with parameters
q = vector with model forcings
w = vector with model errors

Measurement equation
y = vector with measurement data
H = operator that links measurement and model states
v = vector with measurement errors

( )ttactt HxyKxx −+=, Analysis equation
K = Kalman gain
C = model covariance matrix
R = measurement error covariance matrix
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TSMP-PDAF

Realization #1: filter

Realization #2

Realization #3,4…n

PDAF PDAF



TSMP-PDAF

PDAF PDAF

Realization #3,4…n



TSMP-PDAF

• PDAF (Nerger and Hiller, 2013) was coupled to TSMP
• COSMO, CLM and ParFlow are parallel, DA in addition also parallel
• DA  system is fully integrated (no I/O, no model reinitializations)
• Good scalability through effective use of domain decomposition
• Different DA-algorithms activated (EnKF, local EnKF, LETKF)
• Multiscale SM, GW levels and river water levels can be assimilated

Kurtz et al. (2016), GMD



TSMP-PDAF SMALL CATCHMENT (ROLLESBR.)
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SET-UP DA STUDY ROLLESBROICH

• Model: CLM-ParFlow-PDAF (from TSMP)

• 128 x 112 grid cells, 10m x 10m resolution

• 20 layers with variable resolution

• Daily soil moisture from 61 sensors, at 5, 20 and 50cm depth assimilated

• 128 ensemble members: precipitation stochastic and 3D heterogeneous 
fields of soil hydraulic parameters

• Simulation period: May 2011- December 2011

• Real-world experiments and synthetic experiments which mimic real-world



SOIL WATER CONTENT (VERIFICATION)
-33 %           -46%              -46%           -35%

Gebler et al., 2019, WRR



SOIL WATER CONTENT – REAL-WORLD
-7 %                      -1%                  -14%



DISCHARGE ROLLESBROICH

• Only soil moisture was assimilated, not discharge!

• Synthetic case: 
• NSE: -0.03 (open loop) and +0.61 (DA with parameter estimation)
• Bias: +78% (open loop) to -6% (DA with parameter estimation)
• RMSE: 14,0 m3/h (open loop) to 7,3 m3/h (DA with par. est.)

• Real-world case: 
• NSE: +0.49 (open loop) and +0.67 (DA with parameter estimation)
• Bias: +65% (open loop) to -24% (DA with parameter estimation)
• RMSE: 15,8 m3/h (open loop) to 9,2 m3/h (DA with par. est.)

• Again clearly better results for synthetic case



TSMP-PDAF LARGE CATCHMENT SCALE
• Virtual reality created with TSMP: COSMO-CLM3.5-Parflow 

• Mimics Neckar catchment: 400m resolution, 50 soil layers, 2007-2015.

• Data assimilation experiments with this VR:

• 800m resolution CLM3.5-Parflow models, year 2015

• 64 atmospheric forcing ensemble members of four correlated 
variables (precip, T2M, incoming SW, incoming LW) with space-time 
geostatistics. Each variable different correlations in space and time. 

• 64 ensemble members for LAI and soil properties

• Soil moisture data (at 5 or 50cm depth) assimilated with EnKF, with/ 
without localization and with/without parameter estimation

Work by Ching-Pui Hung (IBG-3), Bernd Schalge (U Bonn)



VIRTUAL REALITY (VR) NECKAR CATCHMENT 

Seite 26

Altitude Water table depth



VR: ATMOSPHERIC FORCINGS

Snapshot atmospheric forcings used in land surface-subsurface 
simulations.  



SOIL MOISTURE OBSERVATIONS VR



RMSE SOIL MOISTURE CLM-PARFLOW
800m around observ.    4km around obsev.        8km around observ.

2cm 
depth

50cm 
depth



RMSE-REDUCTION BY DA (CLM-PARFLOW)






RMSE EVAPOTRANSPIRATION

CLM-ParFlow CLM



TSMP-PDAF CONTINENTAL SCALE



TSMP-PDAF EUROCORDEX DOMAIN
CCI-SM CLM-OL CLM-DA

• Assimilation of coarse scale soil 
moisture (SM) in high resolution 
LSM CLM v. 3.5 (PDAF)

• 3km model resolution
• Model forcing COSMO-REA6 

reanalysis (6km) 
• SM product ESA CCI (25km)
• 100 grid cells randomly selected 

and used in DA
• Evaluation of OL simulations and 

DA-runs at all locations
• Comparison with gridded monthly 

runoff data E-RUN v1 and GRACE 
total water storage

• Improvements especially in 
summer and autumn

Naz et al., 2019, HESS



DA EUROCORDEX 2001-2015; EXAMPLES

Naz et al., 2020, Scientific Data



DEVELOPMENT: TSMP-PDAF-MELISSA

Work by Sebastian Friedman, INRIA, France, EU H2020 EoCoE



DEVELOPMENT: RUNNING TSMP ON GPU´S

Porting ParFlow (JURECA, Xeon Phi; JUWELS, NVIDIA GPUs)



DEVELOPMENT: RUNNING TSMP ON GPU´S

• Approaches
• Basis: Extensive performance profiling
• CUDA, OpenCL
• Domain specific language (Kokkos, RAJA Performance Portability 

Layer)
• Optimized parallel I/O w/ netCDF

• Testing and optimization ongoing
• In ParFlow, many loops/code regions parallelized with CUDA
• CUDA unified memory implemented
• Implementation of GPU linear solvers from EoCoE partners

• Ongoing
• Workflows, big data capabilities



CONCLUSIONS AND OUTLOOK

• Terrestrial Systems Modelling is affected by large prediction uncertainties and 
needs large amounts of data to better constrain model predictions

• TSMP-PDAF is a highly efficient DA-framework which can assimilate observations 
from subsurface, land surface and atmosphere

• Applications from small catchment scale to continental scale

• Simultaneous assimilation of data from all three compartments is still pending 
(weakly coupled and fully coupled DA) → FOR2131

• Given extreme compute requirements only EnKF (and variants) were tested with 
TSMP-PDAF (~ 102 model runs). 

• In smaller projects (groundwater model) other algorithms were tested which need 
up to 105 - 106 model evaluations, but are more accurate



SOME HPSC ACTIVITIES OF IBG-3 AT JSC
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DA EUROCORDEX 2001-2015; TRENDS
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