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The Terra-Neo Project

Funded by the DFG programme 1648

Software for Exascale Computing - SPPEXA

e Priority program of the German
Research Fundation (DFG)

e Software for Exascale Computing

e 17 projects funded in Germany with
collaborations all over the world

— TerraNeo is one of them

German Priority Programme 1648 E E
“Software for Exascale Computing” m w
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The Terra-Neo Project

Goal: Creation of a HPC framework employing the concept of hybrid hierarchical
grids for simulations of the Stokes flow problem

High-Performance
Computing Motivated by the simulation of
the Earth Mantle convection

Lead by

Hans-Peter Bunge (LMU Munich,
Geophysics)

Barbara WohImuth (TUM Garching,
Mathematics)

Ulrich Rude (FAU
Erlangen-Nurnberg, CS)

Numerics ' Geophysics  Funding period 2013-2019

terraneo.fau.de
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Mantle Convection

Gaining insight from simulation of MC:
e driving force for plate tectonics

e cause of earthquakes and formation of
mountains

Modeled by Stokes eq. coupled with energy
transport:

=V (2ng(u)) +Vp=p(T)g,
V.u=0,

a7
ot

Problem dimensions:

+u-VT—V-(kVT) = A.

e linear systems with 102 unknowns (1km global mantle resolution)
e time scale 10® years (interval ~ 10000 years)
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Technische Universtat Manchy

How can we solve such systems (efficiently)?

JUWELS, 2019 (31st on TOP500)

e 8168 compute nodes 2x24 cores Dual Intel
Xeon Platinum 8168,

e 264 TB main memory: ~ 3 double
precision vectors of size N = 103,

Solution:

e System matrix requires 10-100x more
memory
—> matrix-free implementations are
required
(even smaller problems cannot afford explicit
assembly for higher order discretizations)

¢ Linear complexity solvers are essential
— geometric multigrid




Geometric Multigrid

et = oA The Multigrid
V-cycle

If you have to move a mountain with a shovel, ’

use a BIG shovel

smooth\\l

reduce high freq error

rolon

.' | return to fine grid

coarse solve
deal with low freq modes on coarse grids

restrict\‘

switch to coarse grid
- fewer nodes, lighter-weight structures

V-cycle is one of several options -> fewer iterations
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Hierarchical Hybrid Grids (HHG)

B. Bergen. Hierarchical Hybrid Grids: Data Structures and Core Algorithms for
Efficient Finite Element Simulations on Supercomputers. Dissertation. 2005.

e structured refinement of unstructured tetrahedral meshes
* multigrid hierarchy by design
e matrix-free, stencil-based kernels

level 0 (no refinement) level 1 level 2
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Scalability

B. Gmeiner et al.. A quantitative performance study for Stokes solvers at the
extreme scale, Journal of Computational Science. 2016.

e monolithic, matrix-free multigrid solver with Uzawa smoother for Stokes
* JUQUEEN supercomputer — 450 TB main memory (solution vector 80 TB)

nodes threads DoFs iter time time w.c.g. timec.g.in%
5 80 27-10° | 10 68588  678.77 1.04

40 640 2.1-10"° | 10 703.69 686.24 2.48
320 5120 1.2-10'"" | 10 741.86  709.88 4.31
2560 40960 1.7-10'"" | 9 72024  671.63 6.75
20480 327680 1.1-10"° | 9 776.09  681.91 12.14

— Find scalable solutions on the coarse grid
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Outline

A Stokes problem
Simplified model and discretization
Solver

Coarse grid solver
Iterative vs Direct solver
simple Krylov solver
Weak Scaling in HHG

Direct solver and agglomeration
MUMPS
Agglomeration
Coarse grid experiments
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A Stokes problem
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Stokes: the problem

e Stokes problem on a spherical shell

—div(g(Vu+(Vu)T)))+vp=f inQ,
div(u)=0 in€Q, @
u=g ondQ

with u velocity, p pressure, f forcing term

e Boundary conditions

e surface: Dirichlet B.C. from plate velocity
data,
e core-mantle: free-slip (simplified).

= Solution up to res. 1e-5 (model/measurement err.)

Huber etal. | Chair for system simulation | Massively parallel multigrid 28th February, 2020 8
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Stokes: the discretization

¢ |owest equal-order FE method + PSPG
stabilization

e (component-wise) nodal basis functions

Ay Gy uy fy
= 3
& 2)6)-6) e
e tetrahedral mesh hierarchy Figure: Unstructured input grid

e HHG uniform refinement of input grid, (rad: 6 div., tan: 13 div.)
e 2 levels for the coarse grid, 6 levels for the MG,

rad tan Tets. gridres. (km) #Nodes | DOF DOF coarse
3 5 1920 6.89 40 | 5.37-10° 9.22-10%
5 9 15360 3.44 320 | 4.29-10"° 6.96 -10°
6 13 43200 2.30 900 | 1.21-10"" 1.94 -10°

Huber etal. | Chair for system simulation | Massively parallel multigrid 28th February, 2020
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Stokes: into serious business

e MG scheme (res. ~1e-5):
- ¢ linear interpolation,
basaltic rocks) e All-at-once Uzawa MG method:
-100 ki (60 mi)

~410km (430 mi) Lithosphere

* Monolithic velocity-pressure solver,
Asthenosphere

¢ Uzawa smoother in V5 — cycle (+2
Mandie i steps / level),
S cosphere « faster + lower mem Stokes flow
y e Coarse grid solver (res. ~1e-5),
i /: e Viscosity scenarios:

® Velocity scenarios
Cor
(iron u?lt; nickel Inner core 1. iso-viscous: v(x’ T) =1,
and sulfur)

2. jump-410: asthenosphere

1 3,48

1- -6.371%d for ||x||2 > 1 —d,

V(x,T) = exp (2,99ﬂ 461 T) 10 a (%[l a
1= femb 1

otherwise,

* Big impact on the convergence of the MG scheme AND coarse grid solver

| Chair for system simulation | Massively parallel multigrid

28th February, 2020 10
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Coarse grid solver
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Coarse grid solver: choice

Iterative solvers:

® Only requires a MV product

® Low cost in terms of memory,
* An iteration is cheap in flops.

® Efficiency problem dependent

e Cvgce — Preconditioning,

e Special problems/structures,

e starts from scratch for every
RHS.

Huber etal. | Chair for system simulation | Massively parallel multigrid 28th February, 2020
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Coarse grid solver: choice

Direct solvers:

® Based on Gaussian elimination

* robust method,

o efficient parallelization,

e A= LU facto. kept for multiple
RHS.

® (Costly factorization

e computation (num. pivoting, ...),
e memory (fill-in, ...).

All All Ala Lll Ull UIE U]S
AEI AEQ A23 = LEl LEE UZE UEE\
AE\I AEE A33 L31 L32 L33 USE\

Huber etal. | Chair for system simulation | Massively parallel multigrid 28th February, 2020 11
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Coarse grid solver: choice

Iterative solvers:

® Only requires a MV product

® Low cost in terms of memory,
* An iteration is cheap in flops.

® Efficiency problem dependent

e Cvgce — Preconditioning,

e Special problems/structures,

e starts from scratch for every
RHS.

Direct solvers:

® Based on Gaussian elimination

* robust method,

o efficient parallelization,

e A= LU facto. kept for multiple
RHS.

® (Costly factorization

e computation (num. pivoting, ...),
e memory (fill-in, ...).

—— Choice will depend on the problem

Huber etal. | Chair for system simulation | Massively parallel multigrid

28th February, 2020
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Coarse grid solver: choice

Iterative solvers:

® Only requires a MV product

® Low cost in terms of memory,
* An iteration is cheap in flops.

® Efficiency problem dependent

e Cvgce — Preconditioning,

e Special problems/structures,

e starts from scratch for every
RHS.

Direct solvers:

® Based on Gaussian elimination

* robust method,

o efficient parallelization,

e A= LU facto. kept for multiple
RHS.

® (Costly factorization

e computation (num. pivoting, ...),
e memory (fill-in, ...).

—— Choice will depend on the problem
-+ Double precision accuracy not required

Huber etal. | Chair for system simulation | Massively parallel multigrid

28th February, 2020 "



mm_ Z=CERFACS #ss

at Mancher

Coarse grid solver: Krylov iterative method

Standard method in HHG: PMINRES

1. Velocity: Jacobi-preconditioned conjugate gradient (res. 1e-2),

2. Pressure: lumped mass-matrix preconditioner,

Convergence: precond. residual of 1e-3

+++

® Easy implementation and parallelization,

® No matrix assembly in HHG,

® Convergence slows depending on problems size/complexity.

Huber etal. | Chair for system simulation | Massively parallel multigrid

28th February, 2020
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Coarse grid solver: Krylov iterative method

Table: Average time (in seconds) over the iterations of the mildly variable
V—cycle with PMINRES on the coarse grid: total, fine and coarse grid
timings for iso-viscous and 410 asthenosphere scenario.

scenarios iso-viscous jump-410
proc. DOFs iter avg. time(s) par. eff. |iter ave. time(s) par. eff.
fine coarse total fine coarse total fine coarse
1920[2-10™ 9.10%| 8 [58.6 57.6 1.0 1.00 |15(61.0 579  3.1] 1.00
15360(4-10"° 7-10%| 4 |66.1 632 29| 0.89 |13|83.0 62.0 21.0| 0.73
43200|2-10" 2.10% | 4 |68.7 65.3  3.4| 0.85 [14(92.0 63.7 28.3| 0.66

Huber etal. | Chair for system simulation | Massively parallel multigrid

28th February, 2020
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Direct solver and agglomeration
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Alternative: use a direct solver

Why

® No convergence issues,
® Robust to viscosity scenarios,

® We have to pay the price of factorization...

GMG context

® Multiple RHS with same matrix,
® Price of facto paid only once, then spread through the V-cycle iterations,
® Can be ideal in our case !

® Would be different for a simple or dynamic problem.

Huber etal. | Chair for system simulation | Massively parallel multigrid 28th February, 2020
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MUMPS: MUltifrontal Massively Parallel Solver

Parallel sparse direct solver for A x = b based on the multifrontal scheme,
Three phases
1. Analysis: ordering, scaling, symbolic factorization,

2. Factorization: A=LU,
3. Solve: Ly=b, then Ux=y

Features

® - Inputin COO format: need a fully assembled matrix,
° Analysis and Factorization (most of the cost) only required once in MG,
o Robust.

MUMPS solver: | http://mumps-solver.org

Huber etal. | Chair for system simulation | Massively parallel multigrid 28th February, 2020 15
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Issue known: more cores + faster solve

Crumbling of the granularity in sub-systems:

I Communication > Computation
7
% geometric multigrid
()]
gn
1 3 %
2 f 6 g

coarse solver
4 5

Sometimes less is better... ~ 50D0Fs on each process !

Huber etal. | Chair for system simulation | Massively parallel multigrid 28th February, 2020 16
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Solution: Agglomerating processes

N RN

|P0|p1 P2

Agglomeration

e Gather data to a subset of the processes: m = |P|/r with r agglo. factor,
e Master-Slave scheme: use the topology of the architecture.

Huber etal. | Chair for system simulation | Massively parallel multigrid 28th February, 2020
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Agglomeration in practice

Table: Reverse strong scaling study of the MUMPS sparse direct solver separated into analysis+factorization and

solve.

, 1920 15360 43200

proc. | ana.-fac. solve|| proc.|ana.-fac. solve|| proc.|ana.-fac. solve
1 1920 30.66 31.84 || 15360 - —||43200 - -
24 80 2.78 0.02 640 39.97 0.23|| 1800 - -
48 40 2.08 0.02 320 30.18 0.21 900 176.6 1.40
192 10 2.77 0.03 80 29.69 0.18 225| 136.35 1.02
576 - - - - - - 75| 136.78 0.97

Huber etal. | Chair for system simulation | Massively parallel multigrid

28th February, 2020
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MUMPS vs. viscosity

Table: Study of the influence of the viscosity scenario on the accuracy and run-time of the direct solver.
Run-times are separated in analysis, factorization and solve step. Each process runs on a separate node.

proc. | DOF coarse || scenario ana.-fac.(s) solve(s) | scaled residu1asl
N X e B R
D e
IR e ] I

Huber etal. | Chair for system simulation | Massively parallel multigrid 28th February, 2020 19
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All-in-all

Table: Weak scaling of the Vygr—cycle with a sparse direct and a simple Krylov coarse level solver. The

run-times for total, fine and coarse are averages over the iterations. The run-times for analysis, factorization and
I data transfer are the total timing.

roc DOF iter time (s) ar. eff
proc. fine coarse total fine coarse | ana.-fac. trans. par. efl.
1920 [2.1-10 9.22-10* [ 15 [ 60.91 60.73  0.02 220 0.04 1.00

15360 | 4.3-10" 6.96-10° || 13 | 69.90 67.28  0.20 31.11  0.25 0.87
43200 [ 1.7-10"" 1.94-10% || 14 | 80.06 69.25 1.02| 136.36 0.65 0.76

Huber etal. | Chair for system simulation | Massively parallel multigrid 28th February, 2020 20



mm = CERFACS &8ss E

All-in-all
1,000 |- - I

© T . —

[

'5 fine

g mmm coarse

o 500 B ana. & fac.
transfer

°—wm P M P M P
DOFs:  537-10° 4.29-10" 1.21-10"

Figure: Difference between an HHG run with PMINRES (P) and MUMPS (M), using BLR (¢ = 10~%) and single
precision, as solvers on the coarse grid for the three different sizes of problem. from using MUMPs.

PMINRES MUMPS
total(s) par. eff. | total(s) par. eff.
1920 | 61.0 1.00 60.91 1.00
15360 | 83.0 0.73 69.90 0.87
43200 | 82.0 0.66 80.06 0.76

proc.

Huber etal. | Chair for system simulation | Massively parallel multigrid 28th February, 2020 21
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Conclusion
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Intermediary Conclusion

Summary

e Bringing together modern methods,

e matrix-free GMG with a focus on the coarse grid solution,
e parallel sparse direct solver,

e agglomeration methods.

In practice

e working parallel implementation in the HHG framework,

e improvement of the parallel efficiency for the solver on the coarse grid with
MUMPS+agglomeration: from 66% to 76%,

* However

* the agglomeration is a very practical approach, requiring extensive tests,
¢ in the end the improvement is not so large compared to the Krylov solver.

— Towards better results ?

Huber etal. | Chair for system simulation | Massively parallel multigrid 28th February, 2020 22
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Approximate direct solver

I Approximation on the coarse grid

double precision accuracy unnecessary:
— only ares. 1e — 5 required for
PMINRES

(a) Strong and weak interactions between clus- (b)  Corresponding

ters in the geometric domain. clusters in the matrix.

MUMPS approach

1. Block Low Rank approximation:

e At facto: off-diagonal blocks of the fronts can be approximated with a
controlled accuracy € using a low-rank matrix,

e Controlled solution accuracy,

e Corr. reduction of memory and flops.

2. Single precision arithmetic.

Tests performed on HazelHen from HLRS, Stuttgart with the same problems and
number of cores.

Huber etal. | Chair for system simulation | Massively parallel multigrid 28th February, 2020 23
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BLR+single precision effect

Table: Study of the influence of BLR € parameter for the jump-410 viscosity, with double and single precision, on
the accuracy and the run-time of the direct solver. Run-times are separated in analysis, factorization and solve
step. Each process runs on a separate node.

DOF analysis factorization solve
ProC- | oarse BLR & time (s) | Flops red. time (s) | time (s) scaled res.
Full Rank 1.55 100.0 0.88]0.03 [6.0-10°™®
40 |9.22-10* 1073 1.81 285 0.91[002 [3.7-107*
1072 + single 1.74 26.0  0.67/0.01 25-1074
Full Rank 13.74 100.0 19.58[/0.20 [4.8-10°™®
160 [6.96-10° 1073 16.03 10.7  9.95/0.10 |2.1-107*
107% + single| 15.86 10.5  6.62]/0.09 |7.5-107°
Full Rank 41.02 100.0 134.61(056 [1.5-10° ¢
105 47.56 13.0 36.98/0.30 [2.4-107®
225 |1.94-10°%|1075 + single | 47.65 13.2 2563|027 |1.4-107°
1073 47.55 75 31.11|024 |5.0-107°
1072 +single| 47.62 76 2116|019 [4.7-107°

Huber etal. | Chair for system simulation | Massively parallel multigrid 28th February, 2020 24
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All-in-All-in-All
1,500
] -
& 1,000 | ]

r
£
I 5

T 500

°“m P M P Y]
DOFs:  5.37.10° 4.29-10"0

fine
mmm coarse
m ana. & fac.
transfer

P

1.21-10"

Figure: Difference between an HHG run with PMINRES (P) and MUMPS (M), using BLR (€ = 10~%) and single
precision, as solvers on the coarse grid for the three different sizes of problem. from using MUMPs.

proc PMINRES MUMPS
" | total(s) par. eff. | total(s) par. eff.
1920 | 79.07 1.00 75.93 1.00
15360 | 91.38 0.87 83.92 0.93
43200 | 100.29 0.79 91.58 0.85
Huber etal. | Chair for system simulation | Massively parallel multigrid

28th February, 2020 25
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Conclusion

Our method

e Efficient solution on the coarse grid, part. for slow converging MG/coarse grid

solver,
e Approximating the solution is enough,
e First attempt at the use of BLR in large scale application,
e single precision enough for such approximation.

Future

e Larger systems,

* Fine tune MUMPS (e.g. geom. info) + OpenMP parallelism,
e comparison to other solvers (e.g. AMG),

e Use a hybrid parallel solver with controlled convergence.

e alternative agglomeration strategy (virtually remove the cost of
analysis+factorization).

Huber etal. | Chair for system simulation | Massively parallel multigrid 28th February, 2020
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HHG primitives

Figure: left: two refined input elements; right: ghost layer structure of two input elements.
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MUMPS performance on 3D EM application on 900 cores

E,. BLR STRATEGY 2, IR =0, £55 = 1077

3D Electromagnetic Modeling
(Double) Complex matrix
Factorization of matrix D4 requires:
3 TBytes of storage, 3 PetaFlops

=emgs

Matrix from 3D EM problems (credits: EMGS)

MUMPS-(Full-Rank) BLR*
time  sp-up™  %peax | time

D4 30M  384M | 2221s 373 33% | 566s
*e =10 ’; *estimated speedup on 90 x 10 cores

matrix n nnz |
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Superman agglomeration

t:;gfl& fac. — Max ( tana.&fac. T tooarse + trans. — ?ﬁnea O)

ffo'fgf' = ftfine + t:;,n;f!&fac, + (#it —1 ) * (?coarse +?trans.)

Table: Weak scaling of the Vyygr—cycle with a sparse direct and a block low-rank coarse level solver with single
precision arithmetic. These results are a simulation of what the Superman strategy would give if we allocate
enough additional nodes to cover for the processes specialized for MUMPS. To compensate for the first cycle. the
computation of the analysis and factorization is removed from the fine grid execution time. The parallel efficiency
compares the average total run-time of each run to the average total run-time of the smallest case with no BLR.

DOFs . ) Master-Slave Superman
proc it | fine coarse trans p

: fine coarse "lana.-fac. total par. eff.|ana.-fac. total par. eff.
511664 036 010 240 11693 1.00 0.00 1171.8  1.00

1010 102
19201 2.1-107 9210745144359 026 0.10| 250 11387 1.03 0.00 1141.3 1.03
13[10800 275 026 | 3630 11202 090 0.00 11568 0.93

1010 105
15360| 4.3-107 7.0-10° 15140666 1.08 070 | 22.30 10907 0.93 0.00 11137 0.95
T4[11972 819 034 | 17620 13820 079 | 9120 16498 084

PYSE 106
43200| 1.2-1007 1.9-10%14, 145188 378 086 | 7530 12987 0.84 0.00 1374.9 0.89
94464(2.58- 107 4.18-10°| 9 [1302.1 4.66 019 | 18518 14921 047 | 4051 13426 052
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