

Massively parallel multigrid with direct coarse grid solvers

Markus Huber¹, Nils Kohl², Philippe Leleux³ (leleux@cerfacs.fr), Ulrich Rüde^{2,3}, Dominik Thönnes², Barbara Wohlmuth¹

¹Chair for Numerical Mathematics, Technical University of München, Germany
 ²Chair for system simulation, Friedrich-Alexander University of Erlangen-Nuremberg, Germany
 ³Parallel Algorithms Team, CERFACS, Toulouse, France

28th February, 2020

Funded by the DFG programme 1648 Software for Exascale Computing - SPPEXA

- Priority program of the German Research Fundation (DFG)
- Software for Exascale Computing
- 17 projects funded in Germany with collaborations all over the world
- \implies TerraNeo is one of them

The Terra-Neo Project

ZCERFACS

The Terra-Neo Project

Goal: Creation of a HPC framework employing the concept of hybrid hierarchical grids for simulations of the Stokes flow problem

Motivated by the simulation of the Earth Mantle convection

Lead by Hans-Peter Bunge (LMU Munich, Geophysics) Barbara Wohlmuth (TUM Garching, Mathematics) Ulrich Rüde (FAU Erlangen-Nürnberg, CS)

Funding period 2013-2019

terraneo.fau.de

Mantle Convection

Gaining insight from simulation of MC:

- driving force for plate tectonics
- cause of earthquakes and formation of mountains

Modeled by **Stokes eq.** coupled with energy transport:

$$-\nabla \cdot (2\eta \varepsilon(\mathbf{u})) + \nabla \rho = \rho(T)g,$$

$$\nabla \cdot \mathbf{u} = 0,$$

$$\frac{\partial T}{\partial t} + \mathbf{u} \cdot \nabla T - \nabla \cdot (\kappa \nabla T) = \lambda.$$
(1)

Problem dimensions:

- linear systems with 10¹² unknowns (1km global mantle resolution)
- time scale 10^8 years (interval $\sim 10\,000$ years)

Problematic

How can we solve such systems (efficiently)?

ZCERFACS 25 FAU

JUWELS, 2019 (31st on TOP500)

- 8168 compute nodes 2x24 cores Dual Intel Xeon Platinum 8168,
- **264 TB main memory**: \sim 3 double precision vectors of size $N = 10^{13}$.

Solution:

• System matrix requires 10-100x more memory

 \implies matrix-free implementations are required

(even smaller problems cannot afford explicit assembly for higher order discretizations)

• Linear complexity solvers are essential \implies geometric multigrid

ECERFACS **CERFACS** FAU

Hierarchical Hybrid Grids (HHG)

B. Bergen. *Hierarchical Hybrid Grids:* Data Structures and Core Algorithms for *Efficient Finite Element Simulations on Supercomputers. Dissertation. 2005.*

- structured refinement of unstructured tetrahedral meshes
- multigrid hierarchy by design
- matrix-free, stencil-based kernels

Scalability

B. Gmeiner et al.. *A quantitative performance study for Stokes* solvers at the *extreme scale*, Journal of Computational Science. 2016.

- monolithic, matrix-free multigrid solver with Uzawa smoother for Stokes
- JUQUEEN supercomputer **450 TB** main memory (solution vector 80 TB)

nodes	threads	DoFs	iter	time	time w.c.g.	time c.g. in %
5	80	2.7 ·10 ⁹	10	685.88	678.77	1.04
40	640	2.1 ·10 ¹⁰	10	703.69	686.24	2.48
320	5120	1.2 ·10 ¹¹	10	741.86	709.88	4.31
2 560	40 960	1.7 ·10 ¹¹	9	720.24	671.63	6.75
20 480	327 680	1.1 ·10 ¹³	9	776.09	681.91	12.14

\Longrightarrow Find scalable solutions on the coarse grid

Outline

A Stokes problem

Simplified model and discretization Solver

Coarse grid solver

Iterative vs Direct solver simple Krylov solver Weak Scaling in HHG

Direct solver and agglomeration

MUMPS Agglomeration Coarse grid experiments

A Stokes problem

Stokes: the problem

Stokes problem on a spherical shell

$$-\operatorname{div}\left(\frac{\nu}{2}(\nabla \mathbf{u} + (\nabla \mathbf{u})^{\top}))\right) + \nabla \rho = \mathbf{f} \quad \text{in } \Omega,$$
$$\operatorname{div}(\mathbf{u}) = 0 \quad \text{in } \Omega, \qquad (2)$$
$$\mathbf{u} = \mathbf{g} \quad \text{on } \partial \Omega$$

with **u** velocity, *p* pressure, **f** forcing term

- Boundary conditions
 - surface: Dirichlet B.C. from plate velocity data,
 - core-mantle: free-slip (simplified).

Solution up to res. 1e-5 (model/measurement err.)

Chair for system simulation | Massively parallel multigrid Huber et al.

28th February, 2020

q

Stokes: the discretization

- lowest equal-order FE method + PSPG stabilization
- (component-wise) nodal basis functions

$$\begin{pmatrix} \mathsf{A}_\ell & \mathsf{G}_\ell \\ \mathsf{D}_\ell & -\mathsf{C}_\ell \end{pmatrix} \begin{pmatrix} \mathsf{u}_\ell \\ \mathsf{p}_\ell \end{pmatrix} = \begin{pmatrix} \mathsf{f}_\ell \\ \mathsf{g}_\ell \end{pmatrix}$$

tetrahedral mesh hierarchy

З

- HHG uniform refinement of input grid,
- 2 levels for the coarse grid, 6 levels for the MG,

radtanTets.grid res. (km)#NodesDOFDOF coarse351920
$$6.89$$
40 $5.37 \cdot 10^9$ $9.22 \cdot 10^4$ 5915360 3.44 320 $4.29 \cdot 10^{10}$ $6.96 \cdot 10^5$ 613 43200 2.30 900 $1.21 \cdot 10^{11}$ $1.94 \cdot 10^6$

Figure: Unstructured input grid (rad: 6 div., tan: 13 div.)

(3)

Stokes: into serious business

- MG scheme (res. ~1e-5):
 - · linear interpolation,
 - All-at-once Uzawa MG method:
 - · Monolithic velocity-pressure solver,
 - Uzawa smoother in V_{var} cycle (+2 steps / level),
 - · faster + lower mem Stokes flow
 - Coarse grid solver (res. ~1e-5),
- · Viscosity scenarios:
 - Velocity scenarios
 - 1. iso-viscous: $v(\mathbf{x}, T) \equiv 1$,
 - 2. jump-410: asthenosphere

$$v(\mathbf{x}, T) = \exp\left(2.99\frac{1 - \|\mathbf{x}\|_2}{1 - r_{\rm cmb}} - 4.61T\right) \begin{cases} \frac{1}{10} \cdot 6.371^3 d_a^3 & \text{ for } \|\mathbf{x}\|_2 > 1 - d_a \\ 1 & \text{ otherwise,} \end{cases}$$
(4)

Big impact on the convergence of the MG scheme AND coarse grid solver

Coarse grid solver

Iterative solvers:

- Only requires a MV product
 - · Low cost in terms of memory,
 - An iteration is cheap in flops.
- Efficiency problem dependent
 - Cvgce Preconditioning,
 - Special problems/structures,
 - starts from scratch for every RHS.

Direct solvers:

Based on Gaussian elimination

ZCERFACS **2015** FAU

- robust method,
- efficient parallelization,
- *A* = *LU* facto. kept for multiple RHS.
- Costly factorization
 - computation (num. pivoting, ...),
 - memory (fill-in, ...).

Iterative solvers:

- Only requires a MV product
 - Low cost in terms of memory,
 - An iteration is cheap in flops.
- Efficiency problem dependent
 - Cvgce Preconditioning,
 - Special problems/structures,
 - starts from scratch for every RHS.

Direct solvers:

Based on Gaussian elimination

Z CERFACS 25 FAU

- robust method,
- efficient parallelization,
- A = LU facto. kept for multiple RHS.
- Costly factorization
 - computation (num. pivoting, ...),
 - memory (fill-in, ...).

$$egin{pmatrix} A_{11} & A_{12} & A_{13} \ A_{21} & A_{22} & A_{23} \ A_{31} & A_{32} & A_{33} \end{pmatrix} = egin{pmatrix} L_{11} & & & \ L_{21} & L_{22} & & \ L_{31} & L_{32} & L_{33} \end{pmatrix} egin{pmatrix} U_{11} & U_{12} & U_{13} \ & U_{22} & U_{23} \ & & U_{33} \end{pmatrix}$$

Iterative solvers:

- Only requires a MV product
 - Low cost in terms of memory,
 - An iteration is cheap in flops.
- Efficiency problem dependent
 - Cvgce Preconditioning,
 - Special problems/structures,
 - starts from scratch for every RHS.

Direct solvers:

- Based on Gaussian elimination
 - robust method,
 - efficient parallelization,
 - *A* = *LU* facto. kept for multiple RHS.
- Costly factorization
 - computation (num. pivoting, ...),
 - memory (fill-in, ...).

\implies Choice will depend on the problem

Iterative solvers:

- Only requires a MV product
 - · Low cost in terms of memory,
 - An iteration is cheap in flops.
- Efficiency problem dependent
 - Cvgce Preconditioning,
 - Special problems/structures,
 - starts from scratch for every RHS.

Direct solvers:

- Based on Gaussian elimination
 - · robust method,
 - efficient parallelization,
 - *A* = *LU* facto. kept for multiple RHS.
- Costly factorization
 - computation (num. pivoting, ...),
 - memory (fill-in, ...).

\implies Choice will depend on the problem + Double precision accuracy not required

Coarse grid solver: Krylov iterative method

Standard method in HHG: PMINRES

- 1. Velocity: Jacobi-preconditioned conjugate gradient (res. 1e-2),
- 2. Pressure: lumped mass-matrix preconditioner,

Convergence: precond. residual of 1e-3

+++

- Easy implementation and parallelization,
- No matrix assembly in HHG,

Convergence slows depending on problems size/complexity.

Coarse grid solver: Krylov iterative method

Table: Average time (in seconds) over the iterations of the mildly variable V-cycle with PMINRES on the coarse grid: total, fine and coarse grid timings for iso-viscous and 410 asthenosphere scenario.

5	scenario	s			iso-v	iscous		jump-410				
proc	DC)Fs	avg. time(s)		nar off	itor	avg. time(s)			nor off		
pioc.	fine	coarse		total	fine	coarse	pai. eii.		total	fine	coarse	pai. eii.
1 920	$2 \cdot 10^{10}$	$9 \cdot 10^{4}$	8	58.6	57.6	1.0	1.00	15	61.0	57.9	3.1	1.00
15360	$4 \cdot 10^{10}$	7 · 10 ⁵	4	66.1	63.2	2.9	0.89	13	83.0	62.0	21.0	0.73
43 200	$2 \cdot 10^{11}$	2 · 10 ⁶	4	68.7	65.3	3.4	0.85	14	92.0	63.7	28.3	0.66

Direct solver and agglomeration

Alternative: use a direct solver

Why

- No convergence issues,
- Robust to viscosity scenarios,
- We have to pay the price of factorization...

GMG context

- Multiple RHS with same matrix,
- Price of facto paid only once, then spread through the V-cycle iterations,
- Can be ideal in our case !
- Would be different for a simple or dynamic problem.

MUMPS: MUltifrontal Massively Parallel Solver

Parallel sparse direct solver for $\mathbf{A} \mathbf{x} = \mathbf{b}$ based on the multifrontal scheme,

Three phases

- 1. Analysis: ordering, scaling, symbolic factorization,
- 2. Factorization: A=LU,
- 3. Solve: Ly=b, then Ux=y

Features

- · Input in COO format: need a fully assembled matrix,
- ++ Analysis and Factorization (most of the cost) only required once in MG,
- ++ Robust.

MUMPS solver: http://mumps-solver.org

Issue known: more cores \neq faster solve

Crumbling of the granularity in sub-systems: Communication \gg Computation

Solution: Agglomerating processes

Agglomeration

- Gather data to a subset of the processes: m = |P|/r with *r* agglo. factor,
- Master-Slave scheme: use the topology of the architecture.

Agglomeration in practice

Table: Reverse strong scaling study of the MUMPS sparse direct solver separated into analysis+factorization and solve.

пт

r		1920			15360		43 200			
'	proc.	anafac.	solve	proc.	anafac.	solve	proc.	anafac.	solve	
1	1 920	30.66	31.84	15360	-	-	43 200	-	-	
24	80	2.78	0.02	640	39.97	0.23	1 800	-	-	
48	40	2.08	0.02	320	30.18	0.21	900	176.6	1.40	
192	10	2.77	0.03	80	29.69	0.18	225	136.35	1.02	
576	-	-	-	-	-	-	75	136.78	0.97	

MUMPS vs. viscosity

Table: Study of the influence of the viscosity scenario on the accuracy and run-time of the direct solver. Run-times are separated in analysis, factorization and solve step. Each process runs on a separate node.

proc.	DOF coarse	scenario	anafac.(s)	solve(s)	scaled residual
40	0.22.104	iso-viscous	2.16	0.02	$1.8 \cdot 10^{-18}$
	9.22.10	jump-410	2.10	0.02	$1.9 \cdot 10^{-17}$
160 6	6 96.10 ⁵	iso-viscous	27.64	0.19	$5.7 \cdot 10^{-19}$
	0.90.10	jump-410	27.79	0.18	$1.2 \cdot 10^{-18}$
225	1 04 106	iso-viscous	154.14	0.50	$5.31 \cdot 10^{-19}$
	1.94 · 10	jump-410	162.53	0.47	$1.27 \cdot 10^{-18}$

All-in-all

Table: Weak scaling of the V_{Var} -cycle with a sparse direct and a simple Krylov coarse level solver. The run-times for total, fine and coarse are averages over the iterations. The run-times for analysis, factorization and data transfer are the total timing.

proc	D0	itor			nar off					
fine		coarse		total	fine	coarse	anafac.	trans.	par. cn.	
1 920	$2.1 \cdot 10^{10}$	$9.22 \cdot 10^4$	15	60.91	60.73	0.02	2.20	0.04	1.00	
15360	4.3 · 10 ¹⁰	$6.96 \cdot 10^{5}$	13	69.90	67.28	0.20	31.11	0.25	0.87	
43 200	$1.7 \cdot 10^{11}$	1.94 · 10 ⁶	14	80.06	69.25	1.02	136.36	0.65	0.76	

Figure: Difference between an HHG run with PMINRES (*P*) and MUMPS (*M*), using BLR ($\varepsilon = 10^{-3}$) and single precision, as solvers on the coarse grid for the three different sizes of problem. from using MUMPs.

proc	PMI	VRES	MUMPS			
proc.	total(s)	par. eff.	total(s)	par. eff.		
1 920	61.0	1.00	60.91	1.00		
15360	83.0	0.73	69.90	0.87		
43 200	82.0	0.66	80.06	0.76		

Conclusion

Intermediary Conclusion

Summary

- Bringing together modern methods,
- matrix-free GMG with a focus on the coarse grid solution,
- parallel sparse direct solver,
- agglomeration methods.

In practice

- working parallel implementation in the HHG framework,
- improvement of the parallel efficiency for the solver on the coarse grid with MUMPS+agglomeration: from 66% to 76%,
- However
 - the agglomeration is a very practical approach, requiring extensive tests,
 - in the end the improvement is not so large compared to the Krylov solver.

 \implies Towards better results ?

Approximate direct solver

Approximation on the coarse grid

double precision accuracy unnecessary: \implies only a res. 1e-5 required for PMINRES

(a) Strong and weak interactions between clusters in the geometric domain.

(b) Corresponding block clusters in the matrix.

MUMPS approach

- 1. Block Low Rank approximation:
 - At facto: off-diagonal blocks of the fronts can be approximated with a controlled accuracy *E* using a low-rank matrix,
 - · Controlled solution accuracy,
 - Corr. reduction of memory and flops.
- 2. Single precision arithmetic.

Tests performed on HazelHen from HLRS, Stuttgart with the same problems and number of cores.

BLR+single precision effect

Table: Study of the influence of BLR ε parameter for the *jump-410* viscosity, with double and single precision, on the accuracy and the run-time of the direct solver. Run-times are separated in analysis, factorization and solve step. Each process runs on a separate node.

proc	DOF	BIDC	analysis factori:		ation	solve	scaled res	
proc.	coarse	DLNC	time (s)	Ilysis factorization solve e (s) Flops red. time (s) time (s) 1.55 100.0 0.88 0.03 1.81 28.5 0.91 0.02 1.74 26.0 0.67 0.01 3.74 100.0 19.58 0.20 6.03 10.7 9.95 0.10 5.86 10.5 6.62 0.09 1.02 100.0 134.61 0.56 7.56 13.0 36.98 0.30 7.65 13.2 25.63 0.27 7.55 7.5 31.11 0.24 7.62 7.6 21.16 0.19	scaleu res.			
		Full Rank	1.55	100.0	0.88	0.03	$6.0 \cdot 10^{-18}$	
40	$9.22 \cdot 10^4$	10 ⁻³	1.81	28.5	0.91	0.02	$3.7 \cdot 10^{-4}$	
		10^{-3} + single	1.74	26.0	0.67	0.01	$2.5 \cdot 10^{-4}$	
		Full Rank	13.74	100.0	19.58	0.20	$4.8 \cdot 10^{-18}$	
160	6.96 · 10 ⁵	10 ⁻³	16.03	10.7	9.95	0.10	$2.1 \cdot 10^{-4}$	
		10^{-3} + single	15.86	10.5	6.62	0.09	$7.5 \cdot 10^{-5}$	
		Full Rank	41.02	100.0	134.61	0.56	$1.5 \cdot 10^{-18}$	
		10 ⁻⁵	47.56	13.0	36.98	0.30	$2.4 \cdot 10^{-6}$	
225	1.94 · 10 ⁶	10^{-5} + single	47.65	13.2	25.63	0.27	$1.4 \cdot 10^{-6}$	
		10 ⁻³	47.55	7.5	31.11	0.24	$5.0 \cdot 10^{-5}$	
		10 ⁻³ + single	47.62	7.6	21.16	0.19	$4.7 \cdot 10^{-5}$	

Figure: Difference between an HHG run with PMINRES (*P*) and MUMPS (*M*), using BLR ($\varepsilon = 10^{-3}$) and single precision, as solvers on the coarse grid for the three different sizes of problem. from using MUMPs.

proc	PMI	VRES	MUMPS			
pi00.	total(s)	par. eff.	total(s)	par. eff.		
1 920	79.07	1.00	75.93	1.00		
15360	91.38	0.87	83.92	0.93		
43 200	100.29	0.79	91.58	0.85		

Conclusion

Our method

- Efficient solution on the coarse grid, part. for slow converging MG/coarse grid solver,
- Approximating the solution is enough,
- First attempt at the use of BLR in large scale application,
- single precision enough for such approximation.

Future

- · Larger systems,
- Fine tune MUMPS (e.g. geom. info) + OpenMP parallelism,
- comparison to other solvers (e.g. AMG),
- Use a hybrid parallel solver with controlled convergence.
- alternative agglomeration strategy (virtually remove the cost of analysis+factorization).

References

- [1] P. AMESTOY, A. BUTTARI, J.-Y. L'EXCELLENT, AND T. MARY. On the complexity of the block low-rank multifrontal factorization. SIAM Journal on Scientific Computing, 39(4):A1710–A1740, 2017. http://mumps-solver.org/
- B. BERGEN. Hierarchical hybrid grids: Data Structures and Core Algorithms for Efficient Finite Element Simulations on Supercomputers. Dissertation, 2005.
- [3] B. GMEINER, M. HUBER, L. JOHN, U. RÜDE, AND B. WOHLMUTH. A quantitative performance study for Stokes solvers at the extreme scale. J. Comput. Sci., 17:509–521, 2016.
- [4] T. MARY. Block Low-Rank multifrontal solvers: complexity, performance, and scalability. PhD thesis, UT3, 2017.
- [5] W. ZULEHNER Analysis of iterative methods for saddle point problems: A unified approach. Math. Comput., 71(238):479–505, Apr. 2002.

Thank you, any questions?

пт

Figure: left: two refined input elements; right: ghost layer structure of two input elements.

MUMPS performance on 3D EM application on 900 cores

E_{χ} , BLR STRATEGY 2, IR = 0, $\varepsilon_{BLR} = 10^{-7}$

3D Electromagnetic Modeling(Double) Complex matrixFactorization of matrix D4 requires:3 TBytes of storage, 3 PetaFlops

≊ emgs

Matrix from 3D EM problems (credits: EMGS)

matrix	n	nnz	MUN time	1PS-(Full-F sp-up ^{**}	lank) % _{peak}	BLR* time		
D4	30M	384M	2221s	373	33%	566s		
$*\epsilon = 10^{-7}$; **estimated speedup on 90 $ imes$ 10 cores								

Superman agglomeration

$$t_{ana.\&fac.}^{simu} = max(t_{ana.\&fac.} + \overline{t}_{coarse} + \overline{t}_{trans.} - \overline{t}_{fine}, 0) t_{total}^{simu} = t_{fine} + t_{ana.\&fac.}^{simu} + (\#it - 1) * (\overline{t}_{coarse} + \overline{t}_{trans.})$$
(5)

💈 CERFACS 🛛 🕂 🗲 FAU

Table: Weak scaling of the V_{Var} -cycle with a sparse direct and a block low-rank coarse level solver with single precision arithmetic. These results are a simulation of what the Superman strategy would give if we allocate enough additional nodes to cover for the processes specialized for MUMPS. To compensate for the first cycle, the computation of the analysis and factorization is removed from the fine grid execution time. The parallel efficiency compares the average total run-time of each run to the average total run-time of the smallest case with no BLR.

proc	DOFs		i+	fino	coarco	coarse trans		Master-Slave			Superman		
piùc.	fine	coarse	1		CUAISE	tians.	anafac.	total	par. eff.	anafac.	total	par. eff.	
1 0 2 0	2 1 . 1010	0.2.104	15	1166.4	0.36	0.10	2.40	1169.3	1.00	0.00	1171.8	1.00	
1920	1920 2.1 • 1010 9.2 • 10	9.2.10	15	1135.9	0.26	0.10	2.50	1138.7	1.03	0.00	1141.3	1.03	
15 260	15 260 4 2 10 ¹⁰ 7 0	7 0 105	13	1080.9	2.75	0.26	36.30	1120.2	0.90	0.00	1156.8	0.93	
15 300	4.3 • 10	7.0.10	13	1066.6	1.08	0.70	22.30	1090.7	0.93	0.00	1113.7	0.95	
42 200	1.2.1011	1 0 . 106	14	1197.2	8.19	0.34	176.20	1382.0	0.79	91.29	1649.8	0.84	
43200 1.2.1	1.2.10	1.9.10	14	1218.8	3.78	0.86	75.30	1298.7	0.84	0.00	1374.9	0.89	
94 464	$2.58 \cdot 10^{11}$	4.18 · 10 ⁶	9	1302.1	4.66	0.19	185.18	1492.1	0.47	40.51	1342.6	0.52	