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Mantle Convection

Gaining insight from simulation of MC:
• driving force for plate tectonics
• cause of earthquakes and formation of

mountains

Modeled by Stokes eq. coupled with energy
transport:

−∇ · (2ηε(u)) + ∇p = ρ(T)g,

∇ ·u = 0,

∂ T

∂ t
+ u ·∇T −∇ · (κ∇T) = λ .

(1)

Problem dimensions:
• linear systems with 1012 unknowns (1km global mantle resolution)
• time scale 108 years (interval∼ 10 000 years)



Problematic

How can we solve such systems (efficiently)?

JUWELS, 2019 (31st on TOP500)
• 8 168 compute nodes 2x24 cores Dual Intel

Xeon Platinum 8168,
• 264 TB main memory: ∼ 3 double

precision vectors of size N = 1013.

Solution:
• System matrix requires 10-100x more

memory
=⇒ matrix-free implementations are
required
(even smaller problems cannot afford explicit
assembly for higher order discretizations)

• Linear complexity solvers are essential
=⇒ geometric multigrid



Geometric Multigrid



Hierarchical Hybrid Grids (HHG)

B. Bergen. Hierarchical Hybrid Grids: Data Structures and Core Algorithms for
Efficient Finite Element Simulations on Supercomputers. Dissertation. 2005.

• structured refinement of unstructured tetrahedral meshes
• multigrid hierarchy by design
• matrix-free, stencil-based kernels



Scalability

B. Gmeiner et al.. A quantitative performance study for Stokes solvers at the
extreme scale, Journal of Computational Science. 2016.

• monolithic, matrix-free multigrid solver with Uzawa smoother for Stokes
• JUQUEEN supercomputer – 450 TB main memory (solution vector 80 TB)

nodes threads DoFs iter time time w.c.g. time c.g. in %
5 80 2.7 ·109 10 685.88 678.77 1.04

40 640 2.1 ·1010 10 703.69 686.24 2.48
320 5 120 1.2 ·1011 10 741.86 709.88 4.31

2 560 40 960 1.7 ·1011 9 720.24 671.63 6.75
20 480 327 680 1.1 ·1013 9 776.09 681.91 12.14

=⇒ Find scalable solutions on the coarse grid
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A Stokes problem



Stokes: the problem

• Stokes problem on a spherical shell

−div
(

ν

2
(∇u + (∇u)>))

)
+ ∇p = f in Ω,

div(u) = 0 in Ω,

u = g on ∂Ω

(2)

with u velocity, p pressure, f forcing term

• Boundary conditions
• surface: Dirichlet B.C. from plate velocity

data,
• core-mantle: free-slip (simplified).

=⇒ Solution up to res. 1e-5 (model/measurement err.)
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Stokes: the discretization

• lowest equal-order FE method + PSPG
stabilization

• (component-wise) nodal basis functions(
A` G`
D` −C`

)(
u`
p`

)
=

(
f`
g`

)
(3)

• tetrahedral mesh hierarchy
• HHG uniform refinement of input grid,
• 2 levels for the coarse grid, 6 levels for the MG,

Figure: Unstructured input grid
(rad: 6 div., tan: 13 div.)

rad tan Tets. grid res. (km) #Nodes DOF DOF coarse
3 5 1920 6.89 40 5.37 ·109 9.22 ·104

5 9 15360 3.44 320 4.29 ·1010 6.96 ·105

6 13 43200 2.30 900 1.21 ·1011 1.94 ·106
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Stokes: into serious business

• MG scheme (res. ∼1e-5):
• linear interpolation,
• All-at-once Uzawa MG method:

• Monolithic velocity-pressure solver,
• Uzawa smoother in Vvar − cycle (+2

steps / level),
• faster + lower mem Stokes flow

• Coarse grid solver (res. ∼1e-5),
• Viscosity scenarios:

• Velocity scenarios
1. iso-viscous: ν(x,T)≡ 1,
2. jump-410: asthenosphere

ν(x,T) = exp

(
2.99

1−‖x‖2

1− rcmb
−4.61T

){ 1
10 ·6.3713d3

a for ‖x‖2 > 1−da

1 otherwise,
(4)

• Big impact on the convergence of the MG scheme AND coarse grid solver
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Coarse grid solver



Coarse grid solver: choice

Iterative solvers:

• Only requires a MV product

• Low cost in terms of memory,
• An iteration is cheap in flops.

• Efficiency problem dependent

• Cvgce – Preconditioning,
• Special problems/structures,
• starts from scratch for every

RHS.

Direct solvers:

• Based on Gaussian elimination

• robust method,
• efficient parallelization,
• A = LU facto. kept for multiple

RHS.

• Costly factorization

• computation (num. pivoting, ...),
• memory (fill-in, ...).
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+ Double precision accuracy not required
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Coarse grid solver: Krylov iterative method

Standard method in HHG: PMINRES

1. Velocity: Jacobi-preconditioned conjugate gradient (res. 1e-2),

2. Pressure: lumped mass-matrix preconditioner,

Convergence: precond. residual of 1e-3

+++

• Easy implementation and parallelization,

• No matrix assembly in HHG,

- - -

• Convergence slows depending on problems size/complexity.
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Coarse grid solver: Krylov iterative method

Table: Average time (in seconds) over the iterations of the mildly variable
V–cycle with PMINRES on the coarse grid: total, fine and coarse grid
timings for iso-viscous and 410 asthenosphere scenario.

scenarios iso-viscous jump-410

proc.
DOFs

iter
avg. time(s)

par. eff. iter
avg. time(s)

par. eff.
fine coarse total fine coarse total fine coarse

1 920 2 ·1010 9 ·104 8 58.6 57.6 1.0 1.00 15 61.0 57.9 3.1 1.00
15 360 4 ·1010 7 ·105 4 66.1 63.2 2.9 0.89 13 83.0 62.0 21.0 0.73
43 200 2 ·1011 2 ·106 4 68.7 65.3 3.4 0.85 14 92.0 63.7 28.3 0.66
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Direct solver and agglomeration



Alternative: use a direct solver

Why

• No convergence issues,

• Robust to viscosity scenarios,

• We have to pay the price of factorization...

GMG context

• Multiple RHS with same matrix,

• Price of facto paid only once, then spread through the V-cycle iterations,

• Can be ideal in our case !

• Would be different for a simple or dynamic problem.
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MUMPS: MUltifrontal Massively Parallel Solver

Parallel sparse direct solver for A x = b based on the multifrontal scheme,

Three phases

1. Analysis: ordering, scaling, symbolic factorization,

2. Factorization: A=LU,

3. Solve: Ly=b, then Ux=y

Features

• - Input in COO format: need a fully assembled matrix,
• ++ Analysis and Factorization (most of the cost) only required once in MG,
• ++ Robust.

MUMPS solver: http://mumps-solver.org
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Issue known: more cores 6= faster solve

Crumbling of the granularity in sub-systems:
Communication� Computation

geometric multigrid

coarse solver

d
ec
re
as
in
g
D
O
F

Sometimes less is better... ∼ 50DOFs on each process !
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Solution: Agglomerating processes

p0 p1 p2 p3 p4 p5

Agglomeration

• Gather data to a subset of the processes: m = |P|/r with r agglo. factor,
• Master-Slave scheme: use the topology of the architecture.
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Agglomeration in practice

Table: Reverse strong scaling study of the MUMPS sparse direct solver separated into analysis+factorization and
solve.

r
1920 15 360 43 200

proc. ana.-fac. solve proc. ana.-fac. solve proc. ana.-fac. solve
1 1 920 30.66 31.84 15 360 – – 43 200 – –
24 80 2.78 0.02 640 39.97 0.23 1 800 – –
48 40 2.08 0.02 320 30.18 0.21 900 176.6 1.40
192 10 2.77 0.03 80 29.69 0.18 225 136.35 1.02
576 – – – – – – 75 136.78 0.97
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MUMPS vs. viscosity

Table: Study of the influence of the viscosity scenario on the accuracy and run-time of the direct solver.
Run-times are separated in analysis, factorization and solve step. Each process runs on a separate node.

proc. DOF coarse scenario ana.-fac.(s) solve(s) scaled residual

40 9.22 ·104 iso-viscous 2.16 0.02 1.8 ·10−18

jump-410 2.10 0.02 1.9 ·10−17

160 6.96 ·105 iso-viscous 27.64 0.19 5.7 ·10−19

jump-410 27.79 0.18 1.2 ·10−18

225 1.94 ·106 iso-viscous 154.14 0.50 5.31 ·10−19

jump-410 162.53 0.47 1.27 ·10−18

Huber et al. | Chair for system simulation | Massively parallel multigrid 28th February, 2020 19



All-in-all

Table: Weak scaling of the Vvar–cycle with a sparse direct and a simple Krylov coarse level solver. The
run-times for total, fine and coarse are averages over the iterations. The run-times for analysis, factorization and
data transfer are the total timing.

proc.
DOF

iter
time (s)

par. eff.
fine coarse total fine coarse ana.-fac. trans.

1 920 2.1 ·1010 9.22 ·104 15 60.91 60.73 0.02 2.20 0.04 1.00
15 360 4.3 ·1010 6.96 ·105 13 69.90 67.28 0.20 31.11 0.25 0.87
43 200 1.7 ·1011 1.94 ·106 14 80.06 69.25 1.02 136.36 0.65 0.76
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All-in-all

M M MP P P
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DOFs: 5.37 ·109 4.29 ·1010 1.21 ·1011

Figure: Difference between an HHG run with PMINRES (P) and MUMPS (M), using BLR (ε = 10−3) and single
precision, as solvers on the coarse grid for the three different sizes of problem. from using MUMPs.

proc.
PMINRES MUMPS

total(s) par. eff. total(s) par. eff.
1 920 61.0 1.00 60.91 1.00

15 360 83.0 0.73 69.90 0.87
43 200 82.0 0.66 80.06 0.76
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Conclusion



Intermediary Conclusion

Summary

• Bringing together modern methods,
• matrix-free GMG with a focus on the coarse grid solution,
• parallel sparse direct solver,
• agglomeration methods.

In practice

• working parallel implementation in the HHG framework,
• improvement of the parallel efficiency for the solver on the coarse grid with

MUMPS+agglomeration: from 66% to 76%,
• However

• the agglomeration is a very practical approach, requiring extensive tests,
• in the end the improvement is not so large compared to the Krylov solver.

=⇒ Towards better results ?
Huber et al. | Chair for system simulation | Massively parallel multigrid 28th February, 2020 22



Approximate direct solver

Approximation on the coarse grid

double precision accuracy unnecessary:
=⇒ only a res. 1e−5 required for
PMINRES

MUMPS approach

1. Block Low Rank approximation:
• At facto: off-diagonal blocks of the fronts can be approximated with a

controlled accuracy ε using a low-rank matrix,
• Controlled solution accuracy,
• Corr. reduction of memory and flops.

2. Single precision arithmetic.

Tests performed on HazelHen from HLRS, Stuttgart with the same problems and
number of cores.
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BLR+single precision effect

Table: Study of the influence of BLR ε parameter for the jump-410 viscosity, with double and single precision, on
the accuracy and the run-time of the direct solver. Run-times are separated in analysis, factorization and solve
step. Each process runs on a separate node.

proc.
DOF

BLR ε
analysis factorization solve

scaled res.
coarse time (s) Flops red. time (s) time (s)

40 9.22 ·104
Full Rank 1.55 100.0 0.88 0.03 6.0 ·10−18

10−3 1.81 28.5 0.91 0.02 3.7 ·10−4

10−3 + single 1.74 26.0 0.67 0.01 2.5 ·10−4

160 6.96 ·105
Full Rank 13.74 100.0 19.58 0.20 4.8 ·10−18

10−3 16.03 10.7 9.95 0.10 2.1 ·10−4

10−3 + single 15.86 10.5 6.62 0.09 7.5 ·10−5

225 1.94 ·106

Full Rank 41.02 100.0 134.61 0.56 1.5 ·10−18

10−5 47.56 13.0 36.98 0.30 2.4 ·10−6

10−5 + single 47.65 13.2 25.63 0.27 1.4 ·10−6

10−3 47.55 7.5 31.11 0.24 5.0 ·10−5

10−3 + single 47.62 7.6 21.16 0.19 4.7 ·10−5
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All-in-All-in-All
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Figure: Difference between an HHG run with PMINRES (P) and MUMPS (M), using BLR (ε = 10−3) and single
precision, as solvers on the coarse grid for the three different sizes of problem. from using MUMPs.

proc.
PMINRES MUMPS

total(s) par. eff. total(s) par. eff.
1 920 79.07 1.00 75.93 1.00

15 360 91.38 0.87 83.92 0.93
43 200 100.29 0.79 91.58 0.85
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Conclusion

Our method

• Efficient solution on the coarse grid, part. for slow converging MG/coarse grid
solver,

• Approximating the solution is enough,
• First attempt at the use of BLR in large scale application,
• single precision enough for such approximation.

Future

• Larger systems,
• Fine tune MUMPS (e.g. geom. info) + OpenMP parallelism,
• comparison to other solvers (e.g. AMG),
• Use a hybrid parallel solver with controlled convergence.
• alternative agglomeration strategy (virtually remove the cost of

analysis+factorization).
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HHG primitives

Figure: left: two refined input elements; right: ghost layer structure of two input elements.



MUMPS performance on 3D EM application on 900 cores

3D Electromagnetic Modeling

(Double) Complex matrix

Factorization of matrix D4 requires:

3 TBytes of storage, 3 PetaFlops

Matrix from 3D EM problems (credits: EMGS)

matrix n nnz
MUMPS-(Full-Rank) BLR∗

time sp-up∗∗ %peak time

D4 30M 384M 2221s 373 33% 566s
∗ε = 10−7; ∗∗estimated speedup on 90×10 cores



Superman agglomeration

tsimu
ana.&fac. = max(tana.&fac. + t̄coarse + t̄trans.− t̄fine,0)

tsimu
total = tfine + tsimu

ana.&fac. + (#it−1)∗ (̄tcoarse + t̄trans.)
(5)

Table: Weak scaling of the Vvar–cycle with a sparse direct and a block low-rank coarse level solver with single
precision arithmetic. These results are a simulation of what the Superman strategy would give if we allocate
enough additional nodes to cover for the processes specialized for MUMPS. To compensate for the first cycle. the
computation of the analysis and factorization is removed from the fine grid execution time. The parallel efficiency
compares the average total run-time of each run to the average total run-time of the smallest case with no BLR.

proc.
DOFs

it fine coarse trans.
Master-Slave Superman

fine coarse ana.-fac. total par. eff. ana.-fac. total par. eff.

1 920 2.1 ·1010 9.2 ·104 15 1166.4 0.36 0.10 2.40 1169.3 1.00 0.00 1171.8 1.00
15 1135.9 0.26 0.10 2.50 1138.7 1.03 0.00 1141.3 1.03

15 360 4.3 ·1010 7.0 ·105 13 1080.9 2.75 0.26 36.30 1120.2 0.90 0.00 1156.8 0.93
13 1066.6 1.08 0.70 22.30 1090.7 0.93 0.00 1113.7 0.95

43 200 1.2 ·1011 1.9 ·106 14 1197.2 8.19 0.34 176.20 1382.0 0.79 91.29 1649.8 0.84
14 1218.8 3.78 0.86 75.30 1298.7 0.84 0.00 1374.9 0.89

94 464 2.58 ·1011 4.18 ·106 9 1302.1 4.66 0.19 185.18 1492.1 0.47 40.51 1342.6 0.52
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