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Outline

§ Large-scale flow patterns or turbulent superstructures in 
convective turbulence

Example 1: Large-scale flow and turbulent transport in 
slender cells
Example 2: Large-scale flow and turbulent transport in 
extended domains

§ Diffusion maps to reconstruct the large-scale flow in 
convective turbulence

§ U-net to analyse turbulent heat transfer due to large-scale
flow

§ Reservoir computing to predict large-scale flow dynamics



Paradigm of convective turbulence

warm

cold

Chillà & JS, Eur. Phys. J. E 2012

Input 

Temperature difference Ra
Properties of working fluid Pr
Geometry G

Response

Heat transfer Nu(Ra,Pr,G)
Momentum transfer Re(Ra,Pr,G)

Boundary layers

Boundary layers

Turbulence

Large-scale flow

How much heat is transported from the bottom to the top?

Does convection switch into an ultimate transport regime for large Ra 
once the boundary layers are fully turbulent?  
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Rayleigh number
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Example 1: Very high Rayleigh number



Boundary layer structure

Ra=1011 Ra=1013 Ra=1015

Temperature

Velocity

Wall Shear
Stress 



Classical scaling of heat transfer up to Ra=1015
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Malkus, Proc. R. Soc. London A, 1954; Spiegel, Mécanique de la Turbulence, CNRS 1962 

Classical 1/3 scaling which is based on marginally stable boundary layers

No sudden transition to an ultimate regime of convection

Nek5000

16 million
spectral
elements

524,288 MPI 
tasks on BG/Q 
Mira (INCITE) 

Iyer, Scheel, JS & Sreenivasan, PNAS 2020

Scheel & JS,
Phys. Rev. Fluids, 

2017



Large-scale flow in slender cell

Barber pole structure affects momentum, but not heat transfer
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Rayleigh number
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Example 2: Very low Prandtl number



Solar convection
Christensen-Dalsgaard et al. Science 1996; JS & Sreenivasan, Rev. Mod. Phys., in revision, 2020

Granulation Supergranulation Giant cells

`G ⇠ 103km `SG ⇡ 3⇥ 104km `GC ⇠ 2⇥ 105km

Extremely low Prandtl number !" = $/& Compressibility important close to surface



Turbulent superstructures of convection

Pr=0.021
Ra=105

Rolls 

Ridges

25 H

Pandey, Scheel & JS, 
Nat. Commun. 2018

Patterns reminiscent to those at onset of convection follow a slow dynamical evolution



Ra=106   Pr=0.001   AR=25   

Re=19880   Nu=2.49

dT

Turbulent convection at Pr=0.001

12800 × 12800 × 800 = 131 billion grid points

25 H

�T =
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Turbulent viscosity and diffusivity

ℓ ≤ #$

Large-scale dynamics = „renormalized“ high-Prandtl-number convection at lower
Rayleigh number

Emran & JS, JFM 2015; Bekki, Hotta & Yokoyama, ApJ 2017 
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Machine learning

How do turbulent superstructures in convection evolve in time? 
How do they contribute to global turbulent transport?

Unsupervised ML Supervised ML

Lagrangian coherent sets by spectral clustering of
trajectories in RBC

Schneide et al., Phys. Rev. Fluids (2018) 
Schneide et al., Phys. Rev. E (2019) 

Reduction of turbulent superstructure to a planar
network by Deep Convolutional Neural Networks

Fonda et al. PNAS (2019)

Large-scale RBC flow by Koopman
eigenfunctions from diffusion maps

Giannakis et al., J. Fluid Mech. (2018) 

Learning large-scale flow dynamics and statistics
in RBC flow by Reservoir Computing 

Pandey & JS, Phys. Rev. Fluids, submitted (2020)



Large-scale flow by unsupervised geometric learning

Switching between four diagonal large-scale flow states via four metastable states

Ra=107

Pr=0.7

Diagonal 
large-scale flow



Koopman operator for large-scale flow

Complementary analysis method for dynamical systems

Eigenvalue problem of Koopman by construction of a data-driven basis in feature Hilbert space

Williams et al., J. Nonlinear Sci. 2015  

xi =  i(~x) Fi =  i(~x)
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100

Euclidean distance fails to describe intrinsic geometry

Geodesic path

What is the intrinsic geometry of the large-scale flow manifold?  

Example of „Swiss roll“ (nonlinear 2D manifold in a 3D space)

Diffusion process for manifold reconstruction
Coifman and Lafon, Appl. Comput. Harmon. Anal. 2006   

Diffusion maps = Diffusion kernel connect points on a manifold by a diffusion process
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Reconstructed velocity field from primary Koopman eigenfunctions

Large-scale flow and clusters in phase space

Vertical velocity
near top

Vertical velocity
in midplane

Velocity in 
vertical plane



Application to RBC at large aspect ratio

Original Eigenfunction 2 Eigenfunction 95

Koopman eigenfunctions = spatial patterns temperature at different scale



Deep learning in turbulent convection

13.5 GByte 65.5 kByte

From 3D turbulent convection to a convective heat transfer network



U-shaped deep neural network
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Slow evolution and role in turbulent heat transfer

Wedge-type 
defect

Trisector-type 
defect

Enhanced convective heat transfer

Instantaneous
temperature

Moving average
temperature

Fonda, Pandey, JS & Sreenivasan, PNAS 2019

Slowly evolving planar network with changing defect topology over few hundred
convective time units

Quantification of heat transfer due to network: remains intact as a contributer to
turbulent transport with increasing Rayleigh number



0.3 0.5 0.7

Slow large-scale dynamics

Slow dynamical evolution with defect point generation and annihilation

200 free-fall time units



Deep learning of turbulent convection

2D turbulence data
Ra=107 & Pr=7

Step 1:
Data 

Reduction

POD 
analysis

Step2: 
Neural Network

Run

time

Prediction of
large-scale
dynamics

Equation-free and data-driven reduced-
order model for the dynamics of

turbulent superstructures

Recurrent Neural Networks = Neural Networks with a time memory
→ Long short-term memory network
→ Reservoir computing model



Reservoir computing – Training phase

~a(t) ~a(t+�t)

Jaeger & Haas, Science 2004, Pathak et al., Chaos, 2017

~r(t) = Ŵin~a(t) ~a(t+�t) = Ŵout~r(t+�t)

Â

⇢(Â) . 1

Ŵin, Â, Ŵout are sparse random matrices initially with Â 2 RNr⇥Nr

~r(t+�t) = (1� ↵)~r(t) + ↵ tanh[Â~r(t) + Ŵin~a(t)]



Reservoir computing – Optimization

~a(t) ~a(t+�t)

Jaeger & Haas, Science 2004, Pathak et al., Chaos, 2017

Â

Optimization at output
layer only!

Ŵ ⇤
outNo backpropagation !



Reservoir computing – Prediction Phase

~a(t) ~a(t+�t)

Jaeger & Haas, Science 2004, Pathak et al., Chaos, 2017

~r(t+�t) = (1� ↵)~r(t) + ↵ tanh[Â~r(t) + ŴinŴ
⇤
out~r(t)]



Step 1: POD snapshot analysis

83.3%

150 degrees of
freedom

Sirovich & Park, Phys. Fluids 1990; Bailon-Cuba & JS, Phys. Fluids 2011

Training Prediction
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Step 2: Dynamics from RCM

T (x, z, t)

ux(x, z, t)

uz(x, z, t)

DNS POD RCM



Step 2: Statistics from RCM

DNS POD ESN

Plume ejection



Summary 
Unsupervised ML in convection: Reconstruction of large-scale flow by
eigenfunctions of the Koopman operator

DL in convection: Reduction of 3d TSS to slowly evolving planar transport
network by a DCNN to analyse turbulent heat transfer

DL of convection: Reduced-order equation-free model of large-scale flow on 
basis of Reservoir Computing to predict large-scale dynamics and statistics
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