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Motivation

 Examples for flow of granular matter in channels are abundant
on the microscale (e.g., microfluidics of fluids containing
colloids) and macroscale (e.g., pedestrians in tunnels)

* Flow can be driven externally (e.g., by a gravitational or electric
field or a pressure difference) or internally by self-propelled
agents.

* Targeted drug delivery in the human blood vessels may be
achieved with the help of self-propelled particles as delivery
vehicles.

 Formation of dense phases (e.g., particle clusters) can act as
obstacle and clog channels, in particular for complex channel
geometries.

* We aim to determine phase diagrams of self-propelled particles
to predict parameter ranges for dilute and dense phases

* We aim to determine the influence of channel walls and an
external alignment field on the distribution of the particles in
the channels.

Active matter

Flock of starlings (NanoWerk.com)

* Bird flocks and fish schools show amazing collective motion.

* Active matter consists of self-propelled agents which consume
energy to generate propulsion forces [1].

* A generic model system for active matter is active Brownian
particles (ABPs) where the individual agents are subject to
thermal motion in addition to their self-propulsion.

* Intwo dimensions, ABPs refers to circular discs that are subject
to translational and rotational thermal motion; rotational
thermal motion changes the direction of self-propulsion.

Model & Methods

* We simulate ABPs that interact via a Lennard-Jones potential
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 We use Brownian Dynamics (BD) simulations for ABPs
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o: distance (size of the particle)

e: depth of the potential well

r: particle position

y: drag force coefficient

F : total external force

W, : noise with zero mean and unit variance
Vq: self-propulsion velocity

é;: unit vector for direction of self-propulsion force
Pe : Péclet number

dgy : Baker-Henderson diameter

p é; : particle dipole moment

B*: alignment field

* Alignment field for particle orientation é; aligns direction of self-
propulsion force

* Simulations are done with a Verlet algorithm using LAMMPS [2]

* Periodic boundary conditions except mentioned otherwise

* We analyze the data using Python to extract local particle
densities and generate phase diagrams.

Results

* We do steady-state runs for 10M steps and production runs for
800M steps with around 12,000 particles in 2D at various Pe.

» Self-propulsion leads to self-trapping of the ABPs and phase
separation into a dense, liquid and a dilute, gas phase.

* We use simulation boxes with aspect ratio 1:3, where the liquid
phase forms perpendicular to the long direction of the box.
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* With decreasing Pe, the gas phase extents to higher and the
liguid phase to lower particle densities p.

* Acritical point where the two-phase region vanishes has been
reported at rho = 0.62 and Pe= 40 [3].

ABPs in straight channels

* For channels with reflective walls, the particles crystallize close to
the wall, which leads to an oscillating density.
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ABPs with alignment field in bulk

* For a strong alignment field, the phase boundaries are parallel to
the direction of the field.
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* For a weak alignment field, the cluster will still orient perpendicular
to the direction of the simulation box.

* For high alignment field strengths, the effective self-propulsion
strength parallel is lower than perpendicular to the alignment field.

* With increasing strength of the alignment field B*and for fixed Pe,
the gas phase extents to higher and the liquid phase to lower
particle densities p.

* We expect to find a critical point beyond a critical field strength B*.
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Conclusions

* ABPs form a liquid phase at high Péclet numbers and densities

* In channels ABPs aggregate at the walls and show crystalline,
fluid, and gas structure.

* A sufficiently strong alignment field for the particle self-
propulsion force alings phase boundaries in field direction

* For strong alignment field, the effective propulsion force is
stronger perpendicular than parallel to the field direction.

Outlook

e (Calculate critical points and exponents for fixed Pe and various

strengths of the alighnment field; calculate Binder cumulants

* |dentify gas, liquid, and one-phase parameter regimes in B*— Pe

phase diagram.

* Characterize flow of ABPs in straight channels of various widths

(with reflective walls) for several combinations of B and Pe

* Characterize local particle order in straight channels with various

widths for several combinations of B*and Pe

» Simulate flow in straight channels with obstacles and/or varying

channel width

e Study complex channel geometries and networks.
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