Implementation of ISORROPIA-lite thermodynamic module within EMAC,
implications for aerosol composition, acidity, and radiative forcing.
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Abstract: This study focuses on the performance and results of a lighter and more computationally efficient version of
the ISORROPIA Il thermodynamic module, i.e., ISORROPIA-lite, in the global atmospheric and chemistry model EMAC.

The main focus is to compare ISORROPIA-lite with ISORROPIA-II (in stable mode), and for that reason, simulations were . .
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completed in the “forward” problem configuration (gas + aerosol as input), for the years 2009 & 2010. An evaluation of (ng m*) Error (%)
the results of ISORROPIA-lite is also performed by comparing them with surface observations from three different HE ’
networks in North America (IMPROVE), Europe (EMEP), and East Asia (EANET). The examined aerosol components are -0.033
nitrate (NO;’) in the coarse and fine size modes, as well as sulphate (SO,2), ammonium (NH,*), crustal ions (Na*, Ca*, K, m -0.025 7.6
Mg*), water mass fraction (WMF) of aerosols and aerosol acidity (pH). Firstly, the model predictions compare quite well m .0.012 126
with the observations, apart from some overpredictions of PM, . nitrate over Europe and East Asia (~*2 & 5 pg m E T ==
respectively or 20%). The observed differences between ISORROPIA-lite and ISORROPIA-II are minimal except for some % e '
overpredictions by the latter in inorganic aerosol concentrations and underprediction of the WMF, producing in the 7 _ -0.012 3.0
majority Mean Error values <10%. Regarding acidity, ISORROPIA-lite produced somewhat more acidic particles (for o Na* -0.460 8.1
about 2 pH units) with further sensitivity simulations showcasing that NH, plays a major role in the buffering of the g 160 Aeroso: .0.021 4.0
accumulation mode pH. Regarding the computational efficiency of ISORROPIA-lite, it exhibited a speed up by 4% & 5% -~ Water (%) T 0.018 5 5
compared to ISORROPIA-II in metastable and stable mode respectively and was calculated based on the number of o 0 _ ' '
total time steps that EMAC performed during the same running period. - m Mg® -0.057 7.0
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» Disagreements in coarse & fine NO; (up to 4 ug m or 50 %) over Himalayan Region with
characteristic low RH values < 40% that do not favor nitrate aerosol formation in metastable.

» Reverse behavior in coarse mode NO, over Middle East due to low water content available for
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» Better agreement over North America, East Asia and Europe where annual RH values are
higher
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» Exceptional agreement for NH,* over North America and Europe. Model overprediction of ~2 ug m=

. . 1. (~10 %) over East Asia.
Relative Humidity dependence of NO;’

» Exceptional agreement for SO, over North America and Europe. Slightly stronger overprediction of
East Asia concentrations.
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» Best agreement for NO;™ over North America. Model overprediction over Europe ( ~2 pug m=or 20 %)
and East Asia (~ 5 pg m=3 or 20%).

(20 — 60 %).

(=]
o

water available for pH
calculation by stable.

o
£
e Estimated Aerosol Acidit
]
Q 3 .
pH of ISORROPIA-lite in the Accumulation Mode Absol ias of , d , lite -

E solute Bias of Accumuation Mode pH, ISORROPIA lite - ISORROPIA 11 > Metastable State prOduces
S E— v 5 5 : - = more acidic accumulation mode
T o1 : ' ' ' ' ' i i
< Fine NO;™ in RH of 20-40 % Fine NO;" in RH of 60-80 % S aerosols particularly over arid
% | (black) and 40-60% (green) (blue) and 80-100 % (pink) B bi i the | RH regions,

ug/m 3
% (ug/m?) (ug/md) IgEEr DIases In the lower ranges - due to no or extremely low
O
L

Along with mid-range temperatures,
NO; aerosol formation is not favored
by the supersaturated state.
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The more basic pH values of East
Asia are due to higher aerosol
water present in metastable
state.

pH of ISORROPIA-lite (Metastable) in the Coarse Mode Absolute Bias of Coarse Mode pH, ISORROPIA lite - ISORROPIA II
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Regions governed by such
atmospheric conditions have most
disagreements.
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» Metastable state produces
more acidic coarse mode
aerosols over polluted regions,
although with smaller bias

Direct TOA Radiative Forcing (10 year Period) (~1 pH).
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More efficient dust removal
along with non-existent salt
precipitation in metastable, lead
to more acidic particles.
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Absolute Bias of Coarse Mode pH With - Without NH3 for ISORROPIA-lite
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» The presence of NH, drives the pH
of accumulation mode to be
significantly more basic.

_11.17 -836 -555 -2.74 0.07 >.88 5 69 3.50 11.30 14.11 16.92 19.73 —-3.159 -2.441 -1.722 -1.004 -0.286 0.433 1151 1.869 2.588  3.306 4.025 4.743
W/m~™2 W/im~2

+0.23 -0.37 » Effect on coarse mode pH is similar,

but not so evident.

All-Sky TOA Radiative Forcing of ONLY COARSE NO3 aerosols All-Sky TOA Radiative Forcing of ONLY FINE NO3 aerosols
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» Should NH, be present, NH,NO
NO, +0.23 -0.35 3 ¢ P a3

would be formed in arid regions

which is less acidic (than KNO; or
CaNO,).

Conclusions:

dSuccessful implementation of ISORROPIA-lite in EMAC showing very good agreement with
ISORROPIA 11, while reproducing observations competently.

JThe most disagreements occur in regions with low-to-mid RH values (20 — 60 % range) due to
particle state differentiation.

 Metastable case produces in general more acidic particles than stable state (1-2 pH), with strong NH,
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» The aerosol Direct Radiative Forcing is controlled more by the effect of the SW radiation flux.

» The NO, Direct Radiative Forcing is controlled more by the Coarse Mode particle phase.
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buffering in Accumulation Mode.
J Magnified estimate of Direct TOA Radiative Forcing for aerosols (- 1.48 Wm™) but much more
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