

THE COLUMBIA PLOT OF THE QCD PHASE TRANSITION

FRANCESCA CUTERI, ALFREDO D'AMBROSIO, REINHOLD KAISER, OWE PHILIPSEN, ALENA SCHÖN, ALESSANDRO SCIARRA

> Institut für Theoretische Physik Goethe-Universität - Frankfurt am Main

INTRODUCTION		COMPUTATIONAL STRATEGY	
Quantum Chromodynamics (QCD) is the theory of the strong interactions	The Columbia plot	Lattice setup	Analysis of transitions in finite volumes
 quarks and gluons are fundamental degrees of freedom of QCD 	at physical quark masses and zero baryonic chemical potential: thermal transition is analytic, smooth crossover [1]	 discretization of continuum QCD action: unim- proved Wilson gauge action, Wilson and stag- gered fermions actions (for expressions see [5]) 	Iocate phase transitions and identify their nature by finite size scaling analyses of standardized moments of appropriate order parameter O
The QCD phase diagram	order of thermal transition depends on masses of the degenerate u, d quarks and the s quark	bare parameters:	$B_n(\beta, am, N_{\sigma}) = \frac{\langle (\mathcal{O} - \langle \mathcal{O} \rangle)^n \rangle}{/(\mathcal{O} - \langle \mathcal{O} \rangle)^2 \rangle^{n/2}}$
at large temperature or densities: quarks and glu- ons form quark-gluon plasma due to weak cou- pling	two possible scenarios predicted from linear sigma models [2] (see figures below)	 lattice gauge coupling \$\beta = 6/g^2\$ quark mass \$am\$ / hopping parameter \$\kappa = \frac{1}{2am+8}\$ 	► phase boundary β_{pc} : $B_3(\beta_{pc}, am, N_{\sigma}) = 0$
 at low temperature and density: large coupling leads to numerous bound hadron states consist- 	infinite and zero quark masses: non-analytic phase transition due to spontaneous breaking of Z(3)-center or chiral symmetry, respectively	 lattice of size N_τ × N_σ³ with lattice spacing a temperature T = 1/(a(β)N_τ) 	 order of the transition: B₄(β_{pc}, am, N_σ) B₄ values in the thermodynamic limit

- ing of quarks and gluons
- QCD phase diagram: form of matter as function of temperature and (baryon) matter density
- non-perturbative approach: Monte Carlo simulations of lattice QCD to study the transition between hadronic phase and quark-gluon plasma
- sign problem prohibits direct simulations at real baryonic chemical potential
- investigate the thermal transition also for unphysical parameters

- first order region in heavy quark mass corner persists in continuum limit [3]
- first order region for small quark masses recedes strongly with decreasing lattice spacing [4]
- Is the chiral transition of first or second order in the continuum limit?
- our group presents evidence for the continuum Columbia plot in the heavy quark mass corner and for the chiral transition

- Numerical Tools
 - ► LQCD code: CL²QCD [6] based on OpenCL
 - handle thousands of simulations: BaHaMAS [7]
- analysis: python scripts bundled in PLASMA

(a) $B_3(|L|)$ and $B_4(|L|)$ of different Markov chains (left) and of merged raw and reweighted data (right) (Wilson fermions, $\kappa = 0.11, N_\tau \times N_\sigma^3 = 6 \times 36^3$)

1 1.604 3

1. order | Z(2) 2. order | crossover

▶ on finite N_{σ} expand B_4 about the critical point

 $B_4(\beta_{pc}, am, N_{\tau}, N_{\sigma}) = (1.604 + Bx + \dots) \left(1 + CN_{\sigma}^{y_t - y_h} + \dots \right)$

with the scaling variable $x(am, N_{\sigma}) \propto N_{\sigma}^{1/\nu}$ and Ising 3D critical exponents $y_t = 1/\nu, y_h$

(b) $B_4(\beta_{pc})$ for $N_{\tau} = 8$ Wilson fermions and a common fit for all volumes according to the kurtosis scaling formula with C = 0

THE HEAVY MASS CORNER

- motivation to study the heavy quark mass regime:
 - understand the interplay of the chiral symmetry restoration and deconfinement at the physical point

THE CHIRAL TRANSITION

- A novel way of analyzing the chiral limit [10]
- reduces systematic errors of required extrapolations significantly

	$ \begin{array}{c c} \bullet & N_{\rm f} = 4 \\ \bullet & N_{\rm f} = 7 \end{array} $	
0.5		

- *Z*(2)-critical boundary as **first-principles benchmark** for effective theories
- simulations are extremely expensive due to the requirement of large and fine lattices
- order parameter associated with spontaneous breaking of global
 Z(3) center symmetry is absolute value of **Polyakov loop**

 $L = \frac{1}{N_{\sigma}^{3}} \sum_{\boldsymbol{n}} \frac{1}{3} \operatorname{Tr} \left[\prod_{n_{4}=0}^{N_{\tau}-1} U_{4}(\boldsymbol{n}, n_{4}) \right].$

- ▶ simulations for $N_f=2$ Wilson [8] and staggered fermions [9]
- scaling variables for Wilson and staggered fermions are

$$x_W(\kappa, N_{\sigma}) = (\kappa - \kappa_c) \cdot N_{\sigma}^{1/\nu}$$
$$x_S(am, N_{\sigma}) = \left(\frac{1}{am} - \frac{1}{am_c}\right) \cdot N_{\sigma}^{1/\nu}$$

- **non-integer** N_f are simulated employing the staggered fermion action for degenerate quarks [11]
- order parameter: chiral condensate $\langle \bar{\psi}\psi \rangle$, scaling variable for analysis: $x = (am am_c)N_{\sigma}^{1/\nu}$
- change from first order to second order chiral phase transition (as in second-order scenario Columbia plot) requires a tricritical N^{tric}_f
- functional form of Z(2)-critical surface entering the tricritical point is governed by tricritical scaling

The chiral critical surface

Chiral critical line for three different lattice spacings in $((m/T), N_f)$ -

Chiral critical line for several $N_{\rm f}$ in $((am)^{2/5}, N_{\rm f})$ -plane and NLO fits

- ▶ up to $N_{\rm f} = 7$, lines are compatible with the existence of a finite $N_{\tau}^{\rm tric}$
- first order region is not continuously connected to continuum limit
- continuum chiral phase transition must be of second order

Concluding Remarks

- convincing evidence for the qualitative form of the Columbia plot
- chiral transition is of second order for all values of m_s
- open question: size of scaling regime, important for physical point
- For a complete understanding of cut-off effects: study critical lines also for larger lattice spacings [12]

Critical pion masses for staggered and Wilson fermions

- critical phase boundary expressed by pseudo-scalar meson masses
- ▶ Wilson fermions: results for three lattice spacings $N_{\tau}=6, 8, 10$
- running simulations on finer lattices for continuum limit

ACKNOWLEDGMENTS

The authors acknowledge support by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) through the grant CRC-TR 211 "Strong-interaction matter under extreme conditions" – project number 315477589 – TRR 211. F.C. and O.P. in addition acknowledge support by the State of Hesse within the Research Cluster ELEMENTS (Project ID 500/10.006). The authors thank the staff of L-CSC at GSI Helmholtzzentrum für Schwerionenforschung and the staff of Goethe-HLR at the CSC of the Goethe-University Frankfurt for computer time and support. plane and leading order (LO) + next-to-leading order (NLO) fits

- critical lines in ((m/T), N_f)-plane separate crossover (above) from first order transition (below)
- \blacktriangleright first order region grows with increasing $N_{\rm f}$
- ► fit to LO + NLO tricritical scaling relation gives $N_{\rm f}^{\rm tric}(N_{\tau})$
 - $am_{c}(N_{\rm f}, N_{\tau}) = D(N_{\tau}) \left(N_{\rm f} N_{\rm f}^{\rm tric}(N_{\tau}) \right)^{\frac{5}{2}} + E(N_{\tau}) \left(N_{\rm f} N_{\rm f}^{\rm tric}(N_{\tau}) \right)^{\frac{7}{2}} + \dots$

► tricritical $N_{\rm f}^{\rm tric}(N_{\tau})$ grows for increasing N_{τ} (decreasing *a*)

REFERENCES

- [1] Y. Aoki et al. "The Order of the quantum chromodynamics transition predicted by the standard model of particle physics". In: *Nature* 443 (2006), pp. 675–678.
- [2] R. D. Pisarski and F. Wilczek. "Remarks on the Chiral Phase Transition in Chromodynamics". In: *Phys. Rev.* D29 (1984), pp. 338–341.
- [3] G. Boyd et al. "Thermodynamics of SU(3) lattice gauge theory". In: *Nucl. Phys. B* 469 (1996), pp. 419–444.
- [4] O. Philipsen. "Constraining the phase diagram of QCD at finite temperature and density". In: *PoS* LATTICE2019 (2019), p. 273.
- [5] C. Gattringer and C. B. Lang. *Quantum chromodynamics on the lattice*. Vol. 788. Berlin: Springer, 2010. ISBN: 978-3-642-01849-7, 978-3-642-01850-3.
- [6] A. Sciarra et al. CL² QCD v1.1. Version v1.1. Feb. 2021. URL: https://doi.org/10.5281/zenodo.5121917.
- [7] A. Sciarra. BaHaMAS. Version BaHaMAS-0.4.0. Feb. 2021. URL: https://doi.org/10.5281/zenodo.4577425.

The Columbia plot according to our simulation results

- 9] R. Kaiser, O. Philipsen, and A. Sciarra. "The QCD Deconfinement Critical Point for $N_{\rm f}=2$ Flavors of Staggered Fermions". In: *38th International Symposium on Lattice Field Theory*. Dec. 2021.
- [10] F. Cuteri, O. Philipsen, and A. Sciarra. "On the order of the QCD chiral phase transition for different numbers of quark flavours". In: *JHEP* 11 (2021), p. 141.
- [11] F. Cuteri, O. Philipsen, and A. Sciarra. "QCD chiral phase transition from noninteger numbers of flavors". In: *Phys. Rev. D* 97.11 (2018), p. 114511.
- [12] F. Cuteri et al. "The chiral phase transition from strong to weak coupling". In: *38th International Symposium on Lattice Field Theory*. Dec. 2021.