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INTRODUCTION

▶ Quantum Chromodynamics (QCD) is the theory
of the strong interactions

▶ quarks and gluons are fundamental degrees of
freedom of QCD

The QCD phase diagram

▶ at large temperature or densities: quarks and glu-
ons form quark-gluon plasma due to weak cou-
pling

▶ at low temperature and density: large coupling
leads to numerous bound hadron states consist-
ing of quarks and gluons

▶ QCD phase diagram: form of matter as function
of temperature and (baryon) matter density

▶ non-perturbative approach: Monte Carlo simula-
tions of lattice QCD to study the transition be-
tween hadronic phase and quark-gluon plasma

▶ sign problem prohibits direct simulations at real
baryonic chemical potential

▶ investigate the thermal transition also for un-
physical parameters

The Columbia plot

▶ at physical quark masses and zero baryonic
chemical potential: thermal transition is analytic,
smooth crossover [1]

▶ order of thermal transition depends on masses of
the degenerate u, d quarks and the s quark

▶ two possible scenarios predicted from linear
sigma models [2] (see figures below)

▶ infinite and zero quark masses: non-analytic
phase transition due to spontaneous breaking of
Z(3)-center or chiral symmetry, respectively

▶ first order region in heavy quark mass corner per-
sists in continuum limit [3]

▶ first order region for small quark masses recedes
strongly with decreasing lattice spacing [4]

▶ Is the chiral transition of first or second order in
the continuum limit?

▶ our group presents evidence for the continuum
Columbia plot in the heavy quark mass corner
and for the chiral transition

(a) First order scenario in the ms −mu,d plane (b) Second order scenario in the ms −mu,d plane

COMPUTATIONAL STRATEGY

Lattice setup

▶ discretization of continuum QCD action: unim-
proved Wilson gauge action, Wilson and stag-
gered fermions actions (for expressions see [5])

▶ bare parameters:

• lattice gauge coupling β = 6/g2

• quark mass am / hopping parameter κ= 1
2am+8

▶ lattice of size Nτ ×N3
σ with lattice spacing a

▶ temperature T = 1/(a(β)Nτ )

▶ continuum limit: Nτ → ∞ for fixed T

Numerical Tools

▶ LQCD code: CL2QCD [6] based on OpenCL

▶ handle thousands of simulations: BaHaMAS [7]

▶ analysis: python scripts bundled in PLASMA

Analysis of transitions in finite volumes

▶ locate phase transitions and identify their nature
by finite size scaling analyses of standardized
moments of appropriate order parameter O

Bn(β, am,Nσ) =
⟨(O − ⟨O⟩)n⟩

⟨(O − ⟨O⟩)2⟩n/2

▶ phase boundary βpc: B3(βpc, am,Nσ) = 0

▶ order of the transition: B4(βpc, am,Nσ)

▶ B4 values in the thermodynamic limit
1. order Z(2) 2. order crossover

1 1.604 3

▶ on finite Nσ expand B4 about the critical point

B4(βpc, am,Nτ , Nσ) =

(1.604 +Bx+ . . . )
(
1 + CNyt−yh

σ + . . .
)

with the scaling variable x(am,Nσ) ∝ N
1/ν
σ and

Ising 3D critical exponents yt = 1/ν, yh
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(a) B3(|L|) and B4(|L|) of different Markov chains (left) and
of merged raw and reweighted data (right) (Wilson fermions,
κ = 0.11, Nτ ×N3

σ = 6× 363)
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(b) B4(βpc) for Nτ = 8 Wilson fermions and a com-
mon fit for all volumes according to the kurtosis scal-
ing formula with C = 0

THE HEAVY MASS CORNER
▶ motivation to study the heavy quark mass regime:

• understand the interplay of the chiral symmetry restoration and
deconfinement at the physical point

• Z(2)-critical boundary as first-principles benchmark for effective
theories

▶ simulations are extremely expensive due to the requirement of large
and fine lattices

▶ order parameter associated with spontaneous breaking of global
Z(3) center symmetry is absolute value of Polyakov loop

L =
1

N3
σ

∑
n

1

3
Tr

[
Nτ−1∏
n4=0

U4(n, n4)

]
.

▶ simulations for Nf=2 Wilson [8] and staggered fermions [9]

▶ scaling variables for Wilson and staggered fermions are

xW (κ,Nσ) = (κ− κc) ·N1/ν
σ

xS(am,Nσ) =

(
1

am
− 1

amc

)
·N1/ν
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Critical pion masses for staggered and Wilson fermions

▶ critical phase boundary expressed by pseudo-scalar meson masses

▶ Wilson fermions: results for three lattice spacings Nτ=6, 8, 10

▶ running simulations on finer lattices for continuum limit

THE CHIRAL TRANSITION

A novel way of analyzing the chiral limit [10]

▶ reduces systematic errors of required extrapolations significantly

▶ non-integer Nf are simulated employing the staggered fermion ac-
tion for degenerate quarks [11]

▶ order parameter: chiral condensate
〈
ψ̄ψ

〉
, scaling variable for anal-

ysis: x = (am− amc)N
1/ν
σ

▶ change from first order to second order chiral phase transition (as in
second-order scenario Columbia plot) requires a tricritical N tric

f

▶ functional form of Z(2)-critical surface entering the tricritical point
is governed by tricritical scaling

The chiral critical surface

Chiral critical line for three different lattice spacings in ((m/T ), Nf)-
plane and leading order (LO) + next-to-leading order (NLO) fits

▶ critical lines in ((m/T ), Nf)-plane separate crossover (above) from
first order transition (below)

▶ first order region grows with increasing Nf

▶ fit to LO + NLO tricritical scaling relation gives N tric
f (Nτ )

amc(Nf, Nτ ) = D(Nτ )
(
Nf −N tric

f (Nτ )
) 5

2
+ E(Nτ )

(
Nf −N tric

f (Nτ )
) 7

2
+ . . .

▶ tricritical N tric
f (Nτ ) grows for increasing Nτ (decreasing a)
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▶ up to Nf = 7, lines are compatible with the existence of a finite N tric
τ

▶ first order region is not continuously connected to continuum limit

▶ continuum chiral phase transition must be of second order

Concluding Remarks

▶ convincing evidence for the qualitative form of the Columbia plot

▶ chiral transition is of second order for all values of ms

▶ open question: size of scaling regime, important for physical point

▶ for a complete understanding of cut-off effects: study critical lines
also for larger lattice spacings [12]

The Columbia plot according to our simulation results
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