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Moments of Parton Distribution Functions

Deep Inelastic Scattering (DIS) provides valuable processes to probe the
structure of Hadrons. In DIS a target proton is scattered with an incoming
particle beam (e.g. leptons) which has high enough energy to shatter the
target. At first order, this process can be understood by a parton (q), e.g.
a quark of the target, interacting with the incoming beam (l) via exchange
of a virtual photon (γ∗).
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DIS defines energy regimes (P + k)2 ≫ −q2 ≡ Q2 at which QCD factoriza-
tion allows to split cross-sections into process dependent and perturbative
(Wilson) coefficients Cp, and process independent but non-perturbative con-
tributions, Parton Distribution Functions (PDFs) fp

dσ2

dx dy
∼

∑
p=g ,u,d ,...

Cp (x , q) fp (x) . (1)

Further, PDFs can be related to forward (k = k ′) matrix elements of local
leading twist operators [1, 2]

OX
n = Ψ̄ΓX{α

↔
Dµ1

· · ·
↔
Dµn}Ψ ≡ OX

{α,µ1,··· ,µn} (2)

via the nth Mellin moment of fp(x), i.e. ⟨xn⟩ =
∫ 1
−1 x

nfp(x) dx computed by

⟨P |OX
n |P⟩ = ⟨xn⟩ Ψ̄ΓX{αipµ1

· · · ipµn}Ψ (3)

By discretizing (Euclidean) space-time onto a Hypercubic lattice, plac-
ing the fermion field onto the lattice sites Ψ(x) → Ψ(n) and

Ψ(n)

Uµ(m)

the gluon field on the link between
two sites Aµ(x) → Uµ(m) =
exp(iaAµ(m)), it is possible to re-
formulate observables in terms of
a Markov process. Each Markov
element is then generated by the
Hybrid/Hamilton Monte Carlo algo-
rithm.

Setup

Nt × L3 β a[fm] mπ[MeV] Ncfg

484 3.31 0.1163(4) 137(2) 212

The ensemble was generated close to the physical point using a tree-level
Symanzik improved gauge action with 2+1 HEX smeared Wilson-clover
flavors [3]. Measurements of two-point correlators and three-point
correlators with eight source-sink separations T/a ∈ {3, 4, 5, 6, 7, 8, 10, 12}
are performed. The shown matrix elements are renormalized in both
RI-SMOM [4] and RI’-MOM [5] scheme, and converted to the MS scheme
at µ = 2GeV[6].
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Analysis

The forward matrix elements of (3) can be extracted from ratios of

two-point C2pt(τ ) =
∫
e−i p⃗x⃗ Tr

{
Γpol

〈
χ(τ, x⃗)χ̄(0, 0⃗)

〉}
d3x and three-point

C3pt(τ,T ) =
∫
e−i p⃗′x⃗e−i(p⃗′−p⃗)y⃗ Tr

{
Γpol

〈
χ(T , x⃗)OX

n (τ, y⃗)χ̄(0, 0⃗)
〉}

d3x d3y

correlators

⟨P |OX
n |P⟩ = lim

τ−T , τ→∞
R(τ,T ) = lim

τ−T , τ→∞

C3pt(τ,T )

C2pt(T )
(4)

where the limit projects onto the ground state that we are interested in. To
remove disconnected diagrams we only considere the iso-vector combination
(p = u − d). Higher state contribution can be reduced by considering sum
of ratios

S(τskip,T ) =
T∑

τ=τskip

R(τ,T )
T→∞−−−→ ⟨P |OX

n |P⟩ (T − τskip) + c. (5)

We restrict ourself to the first moments and the vector case and perform a
linear fit to (5). Higher state contribution can further be reduced by fitting
only T > Tstart until a plateau is reached. The lower end is kept fixed at
τskip = 1.
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Besides the linear fit, other methods can be applied, e.g. finite difference.
All these have different higher order contributions hence can be used to
estimate a systematic error as the standard deviation of these methods. For
this deviation we consider τskip ∈ {0, 1}, Tstart ∈ {3, 4, 5, 6, 7, 8} in both a
linear fit and forward, backward as well as central finite difference. Averaging
over all possible operators yields the first renormalized mellin moment

⟨x⟩ = 0.20(1)(2) (6)

Future Work

For the near future we want to advance this work further. First, higher
moments (n = 2, 3) are in preparation, but they tend to become more noisy
as n increases. Second, a finer lattice spacing is on the way to address the
continuum limit. And last we want to considering helicity and transversity
(X=A,T) moments of PDFs.
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