

Calculating Proton Structure using Lattice QCD

M. Rodekamp with J. Green, A. Salkina, M. Engelhardt, N. Hasan, S. Krieg, S. Meinel, J. Negele, A. Pochinsky, S. Syritsyn

Moments of Parton Distribution Functions

Deep Inelastic Scattering (DIS) provides valuable processes to probe the structure of Hadrons. In DIS a target proton is scattered with an incoming particle beam (e.g. leptons) which has high enough energy to shatter the target. At first order, this process can be understood by a parton (q), e.g. a quark of the target, interacting with the incoming beam (1) via exchange of a virtual photon (γ^*).

Analysis

The forward matrix elements of (3) can be extracted from ratios of two-point $C_{2pt}(\tau) = \int e^{-i\vec{p}\vec{x}} \operatorname{Tr}\left\{\Gamma_{pol}\left\langle\chi(\tau,\vec{x})\overline{\chi}(0,\vec{0})\right\rangle\right\} \mathrm{d}^{3}x$ and three-point $C_{3pt}(\tau, T) = \int e^{-i\vec{p}'\vec{x}} e^{-i(\vec{p}'-\vec{p})\vec{y}} \operatorname{Tr}\left\{\Gamma_{pol}\left(\chi(T, \vec{x})\mathcal{O}_{n}^{X}(\tau, \vec{y})\bar{\chi}(0, \vec{0})\right)\right\} d^{3}x d^{3}y$ correlators

$$\langle P|\mathcal{O}_n^X|P\rangle = \lim_{\tau-T,\,\tau\to\infty} R(\tau,\,T) = \lim_{\tau-T,\,\tau\to\infty} \frac{C_{3pt}(\tau,\,T)}{C_{2pt}(\tau)}$$
 (4)

where the limit projects onto the ground state that we are interested in. To

DIS defines energy regimes $(P+k)^2 \gg -q^2 \equiv Q^2$ at which QCD factorization allows to split cross-sections into process dependent and perturbative (Wilson) coefficients C_p , and process independent but non-perturbative contributions, Parton Distribution Functions (PDFs) f_p

$$\frac{d\sigma^2}{dx\,dy} \sim \sum_{p=g,u,d,\dots} C_p(x,q) f_p(x). \tag{1}$$

Further, PDFs can be related to forward (k = k') matrix elements of local leading twist operators [1, 2]

$$\mathcal{D}_{n}^{X} = \bar{\Psi} \Gamma_{\{\alpha}^{X} \stackrel{\leftrightarrow}{D}_{\mu_{1}} \cdots \stackrel{\leftrightarrow}{D}_{\mu_{n}\}} \Psi \equiv \mathcal{O}_{\{\alpha,\mu_{1},\cdots,\mu_{n}\}}^{X}$$
(2)

via the nth Mellin moment of $f_p(x)$, i.e. $\langle x^n \rangle = \int_{-1}^1 x^n f_p(x) dx$ computed by

$$\langle P|\mathcal{O}_{n}^{X}|P\rangle = \langle x^{n}\rangle \,\overline{\Psi}\Gamma_{\{\alpha}^{X}ip_{\mu_{1}}\cdots ip_{\mu_{n}\}}\Psi$$
 (3)

By discretizing (Euclidean) space-time onto a Hypercubic lattice, plac-

remove disconnected diagrams we only considere the iso-vector combination (p = u - d). Higher state contribution can be reduced by considering sum of ratios

$$S(\tau_{skip}, T) = \sum_{\tau=\tau_{skip}}^{\prime} R(\tau, T) \xrightarrow{T \to \infty} \langle P | \mathcal{O}_n^X | P \rangle (T - \tau_{skip}) + c.$$
(5)

We restrict ourself to the first moments and the vector case and perform a linear fit to (5). Higher state contribution can further be reduced by fitting only $T > T_{start}$ until a plateau is reached. The lower end is kept fixed at $au_{\mathit{skip}} = 1.$

$$\mathcal{O}_{1}^{V} = \frac{1}{2} \left[-\mathcal{O}_{44} + \frac{1}{3} \sum_{i=1}^{3} \mathcal{O}_{ii} \right]_{\vec{p}=(0,0,0)}$$

ing the fermion field onto the lattice sites $\Psi(x) \rightarrow \Psi(n)$ and the gluon field on the link between two sites $A_{\mu}(x) \rightarrow U_{\mu}(m) =$ $exp(iaA_{\mu}(m))$, it is possible to reformulate observables in terms of a Markov process. Each Markov element is then generated by the Hybrid/Hamilton Monte Carlo algorithm.

Setup

 $N_t \times L^3 \beta$ a[fm] m_{π} [MeV] N_{cfg} 3.31 0.1163(4) 137(2) 212 48⁴

The ensemble was generated close to the physical point using a tree-level Symanzik improved gauge action with 2+1 HEX smeared Wilson-clover flavors [3]. Measurements of two-point correlators and three-point correlators with eight source-sink separations $T/a \in \{3, 4, 5, 6, 7, 8, 10, 12\}$ are performed. The shown matrix elements are renormalized in both RI-SMOM [4] and RI'-MOM [5] scheme, and converted to the MS scheme at $\mu = 2 \text{GeV}[6]$.

Besides the linear fit, other methods can be applied, e.g. finite difference. All these have different higher order contributions hence can be used to estimate a systematic error as the standard deviation of these methods. For this deviation we consider $\tau_{skip} \in \{0,1\}$, $T_{start} \in \{3,4,5,6,7,8\}$ in both a linear fit and forward, backward as well as central finite difference. Averaging over all possible operators yields the first renormalized mellin moment

Future Work

For the near future we want to advance this work further. First, higher moments (n = 2, 3) are in preparation, but they tend to become more noisy as *n* increases. Second, a finer lattice spacing is on the way to address the continuum limit. And last we want to considering helicity and transversity (X=A,T) moments of PDFs.

- P. Hägler. In: *Physics reports* (2010). DOI: 10.1016/j.physrep.2009.12.008. [1] M. Göckeler et al. In: Physical Review D (1996). DOI: 10.1103/PhysRevD.54.5705. S. Durr et al. In: *Physics Letters B* (2011). DOI: 10.1016/j.physletb.2011.05.053. C. Sturm et al. In: *Physical Review D* (2009). DOI: 10.1103/PhysRevD.80.014501. G. Martinelli et al. In: Nuclear Physics B (1995). DOI: 10.1016/0550-3213(95)00126-D.
- . Hasan et al. In: *Physical Review D* (2019). DOI: 10.1103/PhysRevD.99.114505.

Member of the Helmholtz Association