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Introduction

The observed baryon asymmetry in the universe cannot be reconciled with the current form of the Standard Model (SM) of particle physics. The Standard Model breaks charge conjugation
parity (CP) symmetry, but not in a su�cient amount to explain the observed matter-antimatter asymmetry. Historically one of the first systems to be studied in the search of symmetry
breaking within the Standard Model is the electric dipole moment (EDM) of the neutron. The contribution to the neutron EDM coming from the SM is several order of magnitudes smaller
than the current experimental bound, thus providing a unique, background-free window for potential discovery of physics Beyond the Standard Model (BSM). CP-violating e↵ective operators
describing, at energies below the electro-weak scale, the e↵ects of BSM physics can contribute to the neutron EDM. To constrain all these contributions to the neutron EDM we need to
precisely determine the hadronic matrix elements of the corresponding renormalized operators.
In this work we show recent results obtained with the gradient flow, that, for the first time, establish a strategy for the non-perturbative renormalization of higher dimensional CP-violating
operators. This paves the way to the determination of the BSM contributions to the neutron EDM and the determination of other phenomenologically relevant quantities such as the
CP-conserving long-distance contributions to K0

�K
0
mixing, direct CP-violation in hyperon decays, ✏0/✏ and the �I = 1/2, K ! ⇡⇡ transition, or the CP-violating part of the K ! 3⇡

decay.

CP-violating operators

Below the energy scale ⇤BSM beyond the Standard Model (BSM) e↵ects are described by local e↵ective operators
(of dimension D) made of the fundamental degrees of freedom of the SM and suppressed by powers of 1/⇤D�4

BSM.
Among the resulting operators one of the dominant contribution to the EDM is given by the D = 5 quark-chromo
EDM (qCEDM) operator

OCE(x) =  (x)�5�
µ⌫Gµ⌫ (x) . (1)

The goal of lattice QCD (LQCD) calculations is to provide the renormalized hadronic matrix elements of the
CP-violating operators. Those matrix elements represent the key input to constrain and disentangle the di↵erent
contributions to any future experimental measurement of a non-zero EDM.

Gradient flow

No lattice QCD calculations exist in the literature of the neutron EDM stemming from CP-violating operators
like the qCEDM (1). The main obstacle is represented by the very complicated renormalization pattern of
such operators. The mixing with lower dimensional operators and the high number of other CP-odd operators
contributing in the renormalization procedure has rendered these type of calculations practically unfeasible. We
have proposed [1, 2, 3] to use the gradient flow [4, 5] to resolve this challenge.
The gradient flow (GF) is a di↵erential operator that modifies the fields at short distances with a renormalizable
smoothing procedure. The new flowed gauge and fermion fields are a complicated non-linear function of the
original degrees of freedom which are the initial conditions of the GF evolution. The smoothing procedure is
governed by a new scale, the flow-time t of dimension D = �2. The GF has many applications such as allowing a
theoretically sound and numerically robust definition of the topological charge [4] and the neutron EDM induced
by the ✓ term [6].

Here we show our preliminary continuum limit for the neutron EDM, dn, and the neutron Schi↵ moment, Sn,
stemming from the ✓ term, obtained with Stabilized Wilson fermions [7] at 3 di↵erent lattice spacings and at the
SU(3) isosymmetric point withm⇡ ' 400MeV. Flowed local fields have also a very simple renormalization pattern.
As a consequence any flowed fermionic operator renormalizes multiplicatively with the same factor depending only
on the fermion content of the operator [5]. Obviously flowed local operator are not physical. To determine the
physical renormalized matrix elements is necessary to find a strategy to connect the flowed renormalized operators
with the physical ones.
There are few ways to achieve this like the use of Ward identities [8] or the use of an operator product expansion
around t ⇠ 0, also called short flow time expansion (SFTX)

O
R
i (x, t) ⇠

X

j

cij(µ, t)O
R
j (x, µ) , (2)

where µ represents the renormalization scale and cij(µ, t) are the Wilson, or matching coe�cients relating the
renormalized flowed operators with the physical ones OR

j (x, µ). The list of operators contributing to the SFTX
in Eq. (2) can be obtained directly in the continuum and each operator can be probed perturbatively and non-
perturbatively in an independent manner, since the SFTX is an operator relation.
Our strategy is to define and calculate matrix elements of the flowed CP-odd operator like the qCEDM (l.h.s of
Eq. (2)), and then calculate the matching coe�cients. Inverting Eq. (2) it is possible to determine the physical
matrix elements, without directly calculating them. The problem of the renormalization is shifted into the
determination of the matching coe�cients. The big advantages of this method are:1) the matching coe�cients
can be determined in the continuum limit keeping the flow time t fixed in physical units; 2) the SFTX is an
operator relation, thus it can be probed in the most advantageous way to determine the matching coe�cients; 3)
it allows a perturbative and non-perturbative determination of the matching coe�cients.

Power divergences

The dominant contribution to the SFTX in Eq. (2) of the qCEDM comes from the pseudoscalar density P (x) =
 (x)�5 (x) (D = 3 operator). This implies that the corresponding matching coe�cient is power divergent when
t ! 0

OCE(x, t) ⇠
cP
t
PR(x) + · · · . (3)

To avoid uncontrolled systematics power divergences need to be subtracted non-perturbatively [9]. In Ref. [10]
we have defined a non-perturbative scheme to define the matching coe�cient using the dimensionless ratio

RP(x4, t) = t
a3

P
x hOCE(x, t)P (0)i

a3
P

x hP (x, t)P (0)i
. (4)

We have tested our strategy on PACS-CS ensembles from Ref. [11] and the lattice parameters are summarized
in this table.

Designation � l s L/a T/a cSW NG a [fm] m⇡ [MeV] mN [GeV] ZP

M1 1.90 0.13700 0.1364 32 64 1.715 399 0.0907(13) 699.0(3) 1.585(2) 0.49605

M2 1.90 0.13727 0.1364 32 64 1.715 400 0.0907(13) 567.6(3) 1.415(3) 0.49605
M3 1.90 0.13754 0.1364 32 64 1.715 450 0.0907(13) 409.7(7) 1.219(4) 0.49605

A1 1.83 0.13825 0.1371 16 32 1.761 800 0.1095(25) 710(1) 1.65(1) 0.44601
A2 1.90 0.13700 0.1364 20 40 1.715 790 0.0936(33) 676.3(7) 1.549(6) 0.49605
A3 2.05 0.13560 0.1351 28 56 1.628 650 0.0684(41) 660.4(7) 1.492(5) 0.51155

Comparison with perturbation theory

Performing the spectral decomposition, the ratio R is independent on x4 for x4 �
p
8t, where the ground state

dominates. From the plateau (see following figure), for each value of the renormalized coupling g evaluated at
flow time t, one reads o↵ the value of a function �(g2), that, while is still not the coe�cient of the power
divergence, it has the same behavior at leading order in perturbation theory.

In this figure we compare �(g2) with our leading order perturbative result [2] (green line). This result is very
encouraging and in the next computer time allocation we plan to extend this calculation using Stabilized Wilson
fermions (SWF) [7], and determine the normalization of the flowed fermion fields. This will allow a direct
determination of the coe�cient cP(g) and a robust continuum limit.

Conclusions and outlook

We have analyzed the quark chromo-EDM operator, for the first time using the gradient flow method to provide
control on the power divergences that occur due to mixing during renormalization when using a discrete spacetime
regulator. In essence, our gradient flow analysis trades induced power divergences with cuto↵ dependencies, the
latter being much more amenable to a continuum limit extrapolation.
Our most important result is the non-perturbative determination of the finite renormalization connecting, for
a wide range of renormalized coupling values, the qCEDM operator with the pseudoscalar density at finite flow
time. It shows the feasibility of our method and the successful matching with perturbation theory. The calculation
of this finite renormalization reduces the power divergence problem to the determination of the nonperturbative
evolution of the pseudoscalar density at finite flow time. In the next step of the calculation we will determine
the correction factor to replace the flowed pseudoscalar density with the unflowed and renormalized one. We
have recently determined, perturbatively and in the continuum, also the logarithmic corrections stemming from
D = 5 operators [3]. Combining these results with the nonperturbative determination of the power-divergent
matching coe�cient of the qCEDM, we have all the elements for a first determination of the quark-chromo EDM
contribution to the neutron.
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