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Motivation
Building blocks of strong nuclear interaction (QCD):

Gluons

Quarks fundamental

Protons / NeutronsAtomic Nucleus

Electrons

Perturbative methods can not be used to investigate the strongly coupled regime.
Lattice field theory gives us a numerical first principle tool to study these theories.
Interesting theories can be obtained by adding extra degree of symmetry.

Theories with adjoint fermions: Giving a bit of extra color to the fermions we make
them more similar to the gluons → Higher degree of symmetry → More tractable

Quarks AdjointQuarks fundamental

Opens the possibility to study Supersymmetric theories and Adjoint QCD theories.
Why study Supersymmetric / Adjoint QCD theories on the lattice?

• Explain beyond Standard Model puzzles: Dark matter, Dark energy ...

• Gain insights into confinement and chiral symmetry breaking, crucial to under-
stand mass generation. These more symmetric theories provide a powerful back-
ground to tackle these problems but they need to be complemented and extended
by numerical methods.

Theories with Adjoint Fermions
N = 1 Supersymmetric (SUSY) Yang-Mills

• SUSY extension of Gauge sector of QCD

• Simplest model with SUSY and local gauge invariance

• Orientifold planar equivalence: SUSY Yang-Mills theory with Nc colors is equiv-
alent to QCD with a single quark flavour, Nf = 1 QCD, in the limit Nc → ∞
with Quarks in antisymmetric repr. of SU(Nc).

• Continuity to semiclassical regime
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• Gauge field Aa
µ(x), a = 1, . . . , N 2

c − 1 , “Gluon" Gauge group SU(Nc)

• Majorana-spinor field λa(x), λ = λTC , “Gluino"

• Gluino mass term mg̃ λ
a
λa breaks SUSY softly.

• (auxiliary field Da(x))

• SUSY: (on-shell) δAa
µ = −2 iλ

a
γµε , δλa = −σµνF a

µνε

Nf = 1 Adjoint (Adj) QCD
Connected to N = 1 and N = 2 SYM

N = 2 SYM Nf = 1 Adj QCD N = 1 SYM
ms → ∞ mf1 → ∞

Two Majorana "half" fermions “Nf = 2 × 1
2 = 1” gives rise to a non-trivial chiral

symmetry U(1)A ⊗ SU(2) with many possible interesting phenomena

• Chiral symmetry breaking

• Pions as massless Goldstone bosons

• Rich phase structure and connection to confinement

A proper study needs to capture chiral symmetry on the lattice → Overlap fermions

Supersymmetric QCD

• Additional quarks ψ and squarks Φi in fundamental representation

• Covariant derivatives, mass terms for (ψ, Φi)

• Yukawa interactions and scalar potential

i
√
2gλ̄a

(
Φ†
1T

aP+ + Φ2T
aP−

)
ψ

− i
√
2gψ̄

(
P−T

aΦ1 + P+T
aΦ†

2

)
λa

g2

2

(
Φ†
1T

aΦ1 − Φ†
2T

aΦ2

)2

.

Non-perturbative Problems
SUSY Models: The lattice breaks SUSY but it can be restored in the continuum limit
by fine tuning of parameters. How do we tune the parameters?

• Gain information from perturbation theory

• Determination of the renormalization factors for N = 1 SYM

Nf = 1 Adj QCD: Still not well investigated. Is the theory IR Conformal? [1]. This
means for the IR effective theory:

• Scale invariance, states become massless

• Absence of confinement and chiral symmetry breaking

• Infra-red fix point present

Nf = 1 Adj QCD with Overlap fermions

Chiral Symmetry
Approximate symmetry of nature that explains the small masses of up and down
quarks and pions. Overlap fermions implement chiral symmetry exactly on the lat-
tice but are challenging to simulate. RHMC + Overlap leads to a stable polynomial
approximation of sign-function to order N :

Dov =
1

2
+
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2
γ5sign(γ5DW ), sign(γ5DW ) ≈ PN(γ5Dov)

• Overlap operator eigenvalue spectrum lies on a circle

• Gap on the spectrum at finite N stabilizes the RHMC algorithm

• No need of fine tunning. Chiral (massless) limit reached in the N → ∞ limit

Chiral condensate
Chiral condensate Σ =< λλ > ̸= 0 sets a scale on the system dim[Σ] = length.

β = 1.6 β = 1.7

Wilson Flow
Flow the lattice fields following the steepest descent direction of the action

V̇t(x, µ) +−g20{∂x,µSW (Vt)}Vt(x, µ), Vt(x, µ)|t=0 = U(x, µ)

It can be used to define an energy scale t0 and to obtained the running of the coupling
constant gGF to check for fix points.

t20 ⟨E⟩ = 0.3, g2GF(µ) =
16π2

3(N 2 − 1)τ 2 ⟨E(τ )⟩
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τ2=1/8µ

.

N = 1 SYM on the lattice

Lattice breaking of SUSY
Local lattice theory breaks SUSY unavoidably at any finite lattice spacing. Approach
for SUSY Yang-Mills theory (Curci, Veneziano) [2]
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hopping parameter, m0 : bare gluino mass

Vab,xµ = 2Tr (U †
xµTaUxµTb), adjoint link variables

2. Tuning towards the chiral supersymmetric continuum limit:

• Wilson term breaks chiral symmetry and SUSY → both recovered in the con-
tinuum limit

• Degenerate mass spectrum (SUSY partners) found in the continuum limit [3, 4]

Challenging extension towards supersymmetric QCD

• Yukawa couplings and scalar potential need to be fine tuned ∼ 10 parameters

• reduced tuning for chiral symmetric formulations (overlap fermions)

Ward Identities
Supersymmetry leads to conserved quantity Sµ = σνργµTrc(Fνρλ) and a SUSY WI
ZS⟨∇µ⟨Sµ(x)O(y)⟩ = 0. However the lattice discretization breaks SUSY adding
extra terms and obstructing its simulation.

ZS⟨∇µSµ(x)O(y)⟩ + ZT ⟨∇µTµ(x)O(y)⟩ = mS⟨(χ(x))O(y)⟩ +O(a),

Renormalization coefficients ZS, ZT Renormalized mass mS

Can we recover the SUSY WI in the continuum limit? Yes, by tuning renormalized
mass to zero [5]. If we have extra parameters (SQCD) to which value do we tune
them? Maybe we can use their perturbative value. First try: are the perturbative and
non-perturbative values of ZS, ZT comparable?

Supercurrent Renormalization
GIRS Scheme: Renormalization scheme with only gauge independent / physical ob-
servables quantities. Valid both perturbatively and non-perturbatively

Z B,GIRS
X Z B,GIRS

Y ⟨OB
X(x)OB

Y (y)⟩|x−y=z̄ = ⟨OX(x)OY (y)⟩tree|x−y=z̄

Get rid of GIRS scale z dependence −→ Translate to MS using conversion factors

2 4 6 8 10 12 14
0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20
= 0.1492
= 0.14925

SignalArtifacts Noise

t

Z
T
/Z

S

Non-perturbative
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= −0.0517(84), κ = 0.14920
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Perturbative
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= 0.1008, κ = 0.1250

• Results are in high tension → Simulating closer to the continuum

• Signal is very noisy → Smearing helps, needs to be included non-perturbatively
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Summary

Main results

• Shown hints of non-conformality of Nf = 1 Adj QCD [6]

• Shown stability of RHMC + Overlap fermions [6, 7]

• First application GIRS scheme to supercurrent renormalization both perturba-
tively [8] and non-perturbatively [9]

Outlook

• Nf = 1 Adj QCD chirally broken → Study phase diagram, pions...

• Tuning of SUSY requires further investigation: working on possible approaches
(finer lattice, smearing, O(a) improvement)

• Towards simulation of SQCD [10]
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