Application of Quantum Annealer as ILP-solver for the Optimization of Resource Allocation in IP-optical Long-haul Networks

JUPSI (D-Wave Advantage ${ }^{\text {TM }}$) Project: QNET

Arthur Witt ${ }^{1}$, Christopher Körber ${ }^{2}$, Andreas Kirstädter ${ }^{3}$, Thomas Luu ${ }^{4}$
${ }^{1}$ arthur.witt@ikr.uni-stuttgart.de, ${ }^{2}$ christopher.koerber@rub.de

| 3 Network Scaling Scenario |
| :--- | :--- |

4 Strategy of Problem Mapping

Express m inequalities as equalities via slack

$$
A \boldsymbol{x}+\boldsymbol{b} \leq 0, \boldsymbol{x} \in \mathbb{N}^{k}, \boldsymbol{b} \in \mathbb{Z}^{m}, A \in \mathbb{Z}^{m \times k}
$$

$\Leftrightarrow \exists \boldsymbol{s} \in \mathbb{Z}^{m} \geq 0: A \boldsymbol{x}+\boldsymbol{b}+\boldsymbol{s}=\mathbf{0}$
Quadratic optimization of objective and penalty

$$
\boldsymbol{c}^{\top} \boldsymbol{x}+p\|A \boldsymbol{x}+\boldsymbol{b}+\boldsymbol{s}\|^{2} \rightarrow \min
$$

Integer encoding for $\boldsymbol{q} \in\{0,1\}^{N}$

$$
\boldsymbol{x}=Z_{x} \boldsymbol{q}_{x}, \quad \boldsymbol{s}=Z_{s} \boldsymbol{q}_{s},
$$

Quadratic Unconstraint Binary Opt. (QUBO) $X^{2}(\boldsymbol{q})=\boldsymbol{c}^{\top} Z_{x} \boldsymbol{q}_{x}+p\left\|A Z_{x} \boldsymbol{q}_{x}+\boldsymbol{b}+Z_{s} \boldsymbol{q}_{s}\right\|^{2} \rightarrow$ min

5 ILP as QUBO Problem

ILP related matrices are of size

Modified objective function in QUBO form becomes

$$
X^{2}(\boldsymbol{q})=\boldsymbol{q}^{\top} Q \boldsymbol{q}+C \rightarrow \min
$$

with $\quad Q=p\left[\begin{array}{ll}Q_{x x} & Q_{x s} \\ Q_{s x} & Q_{s s}\end{array}\right], \quad \boldsymbol{q}=\binom{\boldsymbol{q}_{x}}{\boldsymbol{q}_{s}}, \quad C=p\|\boldsymbol{b}\|^{2}$
Subcomponents relate to ILP matrices by
$Q_{x x}=Z_{x}^{\top} A^{\top} A Z_{x}+\operatorname{diag}\left\{\left(2 \boldsymbol{b}^{\top} A+\frac{1}{p} \boldsymbol{c}^{\top}\right) Z_{x}\right\}$
$Q_{s s}=Z_{s}^{\top} Z_{s}+2 \operatorname{diag}\left\{Z_{s}^{\top} \boldsymbol{b}\right\}, Q_{x s}=Q_{s X}^{\top}=Z_{x}^{\top} A^{\top} Z_{s}$

6 Challenges and Opt. Routes

- Finite hardware resources \& finding an embedding (once)
- Available qubits $|q| \lesssim 5.6 k$
- Qubit connectivity $\left|\widetilde{Q}_{i \rightarrow j}\right| \leq 15(\operatorname{avg} \approx 14.3)$ (For higher connectivity, multiple physical qubits are chained to form a logical qubit)
- Total connectivity $\left|\left\{Q_{i j} \neq 0\right\}\right| \lesssim 40.1 \mathrm{k}$
\Rightarrow Minimize slack size by reducing resolution $H \in \mathbb{R}^{|C| \times|T|} \rightarrow H \in \mathbb{Q}^{|C| \times|T|}$ (slack digits)
- Finding the ground state (hardware resolution vs problem energy landscape)
\Rightarrow Problem resolution dependent penalty term

8 Conclusions

- Theoretical scaling suggests possibility to embed network sizes up to 11 nodes Actual embedding related scaling limited to 6 nodes (empirically scaling with $\sim n^{3.3}$): Room to improve search for embedding?
- Assuming robust scaling prediction, embedding 15 -node networks requires more than $\times 10 \#$ available qubits
- Possible to find correct solution for smallest possible network with high probability. Scaling to larger networks requires further optimizations of algorithm

9 Future Steps

- Embedding search
- Algorithm optimizations
- Hybrid Monte Carlo comparison benchmark
- Open Data access (via EspressoDB)

Acknowledgment

The authors gratefully acknowledge the Jülich Supercomputing Centre for funding this
project by providing computing time through the Jülich UNified Infrastructure for
Quantum computing (JUNIQ) on the D-Wave Advantage ${ }^{\text {TM }}$ quantum system.
This work has been performed in the framework of the CELTIC-NEXT EUREKA project AI-NET ANTILLAS (Project ID C2019/3-3), and it is partly funded by the German
Federal Ministry of Education and Research (Project ID 16 KIS 1312). Federal Ministry of Education and Research (Project ID 16 KIS 1312).

ر
JÜLICH

Literature

[1] C. C. Chang, C.--C. Chen, C. Körber, T. S. Humble, J. Ostrowski. "Integer Programming from
[arXiv:1912.03580] [2] T. Enderle, A. Witt, and F. Christou. "Delay-Differentiated Routing in Meshed
Backbone Networkss". Proceedings of the 21st ITG-Symposium in Photonic Backbone Networks". Proceedings of th.
Networks 2020. Nov. 2020, pp. 20-27.
[3] C. Fraleigh, F. Tobagi, and C. Diot. "Provisioning IP backbone networks to support [3] C. Fraleigh, F. Tobagi, and C. Diot. "Provisioning IP backbone networks to sur
latency sensitive traffic." IEEE INFOCOM 2003. Twenty-second Annual Joint latency sensitive traffic."
Conference of the IEEE Computer and Communications Societies (IEEE Cat. Conference of the
No.03CH37428). Vol. 1. 2003, pp. 375-385.
[4] C. C. Chang, C. Körber, A. Walker-Loud. "EspressoDB: A scientific database for managing high-performance computing workflow". J.Open Source Softw. 5 (2020) 46, 2007, [arXiv:1912.03580]
[5] U. Bauknecht, T. Enderle, and A. Witt. "Reduction of Delay Overfulfillment in IP-over-DWDM Transport Networks". Proceedings of the 23rd Conference on Optical Network Design and Modeling (ONDM 2019). 2019.

