

Institute of Communication Networks and Computer Engeneering **University of Stuttgart**

Germany

RUHR UNIVERSITÄT

Application of Quantum Annealer as ILP-solver for the Optimization of Resource Allocation in IP-optical Long-haul Networks JUPSI (D-Wave Advantage[™]) Project: QNET

Arthur Witt¹, Christopher Körber², Andreas Kirstädter³, Thomas Luu⁴

¹arthur.witt@ikr.uni-stuttgart.de, ²christopher.koerber@rub.de

1 Objective		2 Mixed Integer Linear Program for Resource Allocation	
Network Automation with	Post Processing	Variables:	ensio
Quantum Computing	Select one good solution out of many possible solutions.	$ \text{Path Selector } \boldsymbol{g} \leftrightarrow \boldsymbol{g}_{L} \in \{0,1\} $	mands: ndidate
	Only Good or	$g_{d,t_d} = 1 \leftrightarrow \text{Demand } d \text{ is realized by } t_d \text{ (else 0)} \qquad \qquad d_1 = A \xrightarrow{10 \text{ Gbps}} C \qquad \qquad \text{Set of all demands } D = \{d_1, \cdots\} \qquad \qquad \text{# of all normalized by } t_d \text{ (else 0)} \qquad \qquad \text{# of all realized by } t_d \text{ (else 0)} \qquad \qquad \text{ for all demands } D = \{d_1, \cdots\} \qquad \qquad \text{ for all demands } D = \{d_1, \cdots\} \qquad \qquad \text{ for all realized by } t_d \text{ (else 0)} \qquad \qquad \text{ for all realized by } t_d \text{ (else 0)} \qquad \qquad \text{ for all demands } D = \{d_1, \cdots\} \qquad \qquad \text{ for all demands } D = \{d_1, \cdots\} \qquad \qquad \text{ for all realized by } t_d \text{ (for all demands } D = \{d_1, \cdots\} \qquad \qquad \text{ for all real demands } D = \{d_1, \cdots\} \qquad \qquad \text{ for all demands } D = \{d_1, \cdots\} \qquad \qquad \text{ for all demands } D = \{d_1, \cdots\} \qquad \qquad \text{ for all demands } D = \{d_1, \cdots\} \qquad \qquad \text{ for all demands } D = \{d_1, \cdots\} \qquad \qquad \text{ for all demands } D = \{d_1, \cdots\} \qquad \qquad \text{ for all demands } D = \{d_1, \cdots\} \qquad \qquad \text{ for all demands } D = \{d_1, \cdots\} \qquad \qquad \text{ for all demands } D = \{d_1, \cdots\} \qquad \qquad \text{ for all demands } D = \{d_1, \cdots\} \qquad \qquad \text{ for all demands } D = \{d_1, \cdots\} \qquad \ \text{ for all demands } D = \{d_1, \cdots\} \qquad \ for$	des in n alization

Room to improve search for embedding?

Dimensions:

of all nodes in network |V

of all demands: |D|

(For higher connectivity, multiple physical qubits)

4 Strategy of Problem Mapping

Express *m* inequalities as equalities via slack $A\mathbf{x} + \mathbf{b} < 0, \ \mathbf{x} \in \mathbb{N}^k, \ \mathbf{b} \in \mathbb{Z}^m, \ A \in \mathbb{Z}^{m \times k}$ $\Leftrightarrow \exists \boldsymbol{s} \in \mathbb{Z}^m \geq 0 : A\boldsymbol{x} + \boldsymbol{b} + \boldsymbol{s} = \boldsymbol{0}$

Quadratic optimization of objective and penalty $\boldsymbol{c}^{\top}\boldsymbol{x} + p \|A\boldsymbol{x} + \boldsymbol{b} + \boldsymbol{s}\|^2 \rightarrow \min$

Integer encoding for $\boldsymbol{q} \in \{0, 1\}^N$ $\boldsymbol{x} = Z_{\boldsymbol{x}}\boldsymbol{q}_{\boldsymbol{x}}, \quad \boldsymbol{s} = Z_{\boldsymbol{s}}\boldsymbol{q}_{\boldsymbol{s}},$

Quadratic Unconstraint Binary Opt. (QUBO) $X^2(\boldsymbol{q}) = \boldsymbol{c}^\top Z_x \boldsymbol{q}_x + p \|AZ_x \boldsymbol{q}_x + \boldsymbol{b} + Z_s \boldsymbol{q}_s\|^2 \rightarrow \min$

5 ILP as QUBO Problem

- are chained to form a logical qubit)
- Total connectivity $|\{Q_{ij} \neq 0\}| \leq 40.1k$
- \Rightarrow Minimize slack size by reducing resolution $H \in \mathbb{R}^{|C| \times |T|} \to H \in \mathbb{Q}^{|C| \times |T|}$ (slack digits)
- Finding the ground state *(hardware*) resolution vs problem energy landscape)
- \Rightarrow Problem resolution dependent penalty term

7 **Results**

- Assuming robust scaling prediction, embedding 15-node networks requires more than $\times 10 \ \#$ available qubits
- Possible to find correct solution for smallest possible network with high probability. Scaling to larger networks requires further optimizations of algorithm

9 Future Steps

- Embedding search
- Algorithm optimizations
- Hybrid Monte Carlo comparison benchmark
- Open Data access (via EspressoDB)

Acknowledgment

The authors gratefully acknowledge the Jülich Supercomputing Centre for funding this project by providing computing time through the Jülich UNified Infrastructure for Quantum computing (JUNIQ) on the D-Wave Advantage[™] quantum system.

This work has been performed in the framework of the CELTIC-NEXT EUREKA project AI-NET ANTILLAS (Project ID C2019/3-3), and it is partly funded by the German Federal Ministry of Education and Research (Project ID 16 KIS 1312).

The authors alone are responsible for the content of the poster.

Literature

- [1] C. C. Chang, C.-C. Chen, C. Körber, T. S. Humble, J. Ostrowski. "Integer Programming from Quantum Annealing and Open Quantum Systems". [arXiv:1912.03580]
- [2] T. Enderle, A. Witt, and F. Christou. "Delay-Differentiated Routing in Meshed Backbone Networks". Proceedings of the 21st ITG-Symposium in Photonic *Networks 2020.* Nov. 2020, pp. 20–27.
- [3] C. Fraleigh, F. Tobagi, and C. Diot. "Provisioning IP backbone networks to support latency sensitive traffic." IEEE INFOCOM 2003. Twenty-second Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE Cat. *No.03CH37428*). Vol. 1. 2003, pp. 375–385.
- [4] C. C. Chang, C. Körber, A. Walker-Loud. "EspressoDB: A scientific database for managing high-performance computing workflow". J.Open Source Softw. 5 (2020) 46, 2007, [arXiv:1912.03580]
- [5] U. Bauknecht, T. Enderle, and A. Witt. "Reduction of Delay Overfulfillment in IP-over-DWDM Transport Networks". Proceedings of the 23rd Conference on Optical Network Design and Modeling (ONDM 2019). 2019.