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Spiking neural networks

Spiking neurons and spiking neural networks (SNNs) de-
veloped as models of biological neurons. They are cur-
rently the canonical neuron architecture on neuromorphic
devices. But, the focus of neuromorphic devices is shift-
ing towards machine learning applications.

Spiking neural networks?

PROs: Common spiking models are theoretically and
computationally simple or tractable. The dynamics of
these networks is well understood, or well studied.

CONs: SNNs lag significantly behind state-of-the-art
deep learning models in task-performance. In addi-
tion, the constraints for computing in the brain are differ-
ent from that of neuromorphic devices. Therefore, SNNs
may not be the ideal models for specific neuromorphic
devices.
Building models for neuromorphic hardware from first
principles can lead to better models – both in terms of
task-performance and energy-efficiency.

BEYOND Spiking neural networks

To demonstrate this paradigm, we build a model by ex-
tracting the principles of event-based computing and
activity-sparsity from SNNs.
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Figure 1: A. The standard GRU B. Our model extends GRU.

This model is derived from the Gated Recurrent Unit
(GRU) by adding an event-generation mechanism.
Note that the complexity of biological neurons can be
subsumed by such models.

Event-based GRU (EGRU)
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Figure 2: Illustrates the discrete time state dynamics for two EGRU units (i

and j). A. Forward dynamics. B. Activity-sparse backward dynamics. Insets

show threshold function H(c) and pseudo derivative thereof.

The dynamics of a layer of GRU units is given by

u⟨t⟩ = σ
(
Wux̂

⟨t⟩ + bu

)
, r⟨t⟩ = σ

(
Wrx̂

⟨t⟩ + br

)
,

z⟨t⟩ = g
(
Wz

[
x⟨t⟩, r⟨t⟩ ⊙ y⟨t−1⟩

]
+ bz

)
,

y⟨t⟩ = u⟨t⟩ ⊙ z⟨t⟩ + (1− u⟨t⟩) ⊙ y⟨t−1⟩ .

where x̂⟨t⟩ =
[
x⟨t⟩, y⟨t−1⟩], Wu/r/z, bu/r/z denote net-

work weights and biases, ⊙ denotes the element-wise
product, and σ (·) is the vectorized sigmoid function.
The notation

[
x⟨t⟩,y⟨t−1⟩] denotes vector concatena-

tion. The function g (·) is an element-wise nonlinearity
(typically the hyperbolic tangent function).
The GRU is augmented with an event-generator
consisting of a rectifier and a clearing mechanism.
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where H (·) is the Heaviside step function and ϑi > 0
is a threshold parameter.

Sparse backward pass

Since H(c) is not differentiable at the threshold ϑi,
we define a pseudo-derivative at that point for cal-
culating the backpropagated gradients as shown in
the inset in Fig. 2B. Beyond the support of the
pseudo-derivative, gradients are not backpropa-
gated, which makes the backward pass sparse.

Results: DVS gesture recognition

Figure 3: DVS Gesture classification. A. Illustration of data for an example class

(right hand wave). On (red) and off (blue) events are shown over time. B. Sparse

activity of input and EGRU units (random subset).

reference architecture para- effective accu- activity backward
(# units) meters MAC racy sparsity sparsity

He et al. LSTM (512) 7.35M 7.34M 86.81% - -
Innocenti et al. AlexNet+LSTM+DA 9.99M 638.25M 97.73% - -

ours GRU (1024) 15.75M 15.73M 88.07% 0% -
ours EGRU (512) 5.51M 4.19M 88.02% 83.79% 53.55%
ours EGRU (1024) 15.75M 10.54M 90.22% 82.53% 56.63%
ours EGRU+DA (1024) 15.75M 10.77M 97.13% 78.77% 58.20%

Table 1: Model performance over 5 runs for the DVS Gesture recognition task.

Results: Language modelling on PTB

reference architecture para- effective validation test activity
(# units) meters MAC * sparsity

Gal et al. Variational LSTM 24M - 77.3 75.0 -
Merity et al. AWD-LSTM 24M 24M 60.0 57.3 -

ours GRU (1350) 24M 24M 71.2 68.8 -
ours EGRU (1350) 24M 4.7M 67.4 64.5 88.0%
ours EGRU (2000) 45M 6.6M 66.5 63.7 90.4%
ours EGRU (2700) 77M 8.1M 66.4 63.5 93.2%

Table 2: Model comparison on PennTreebank.
A B C

Figure 4: Backward sparsity for EGRU with 2000 hidden units on the Penn Treebank

language modeling task with varying pseudo-derivative support ϵ.

EGRU in continuous time

EGRU can also be written in continuous time, since the
GRU itself has a natural continuous-time formulation.
To handle discrete inputs as events, we formulate our
model as a hybrid discrete/continuous system. We intro-
duce unit activations au(t), ar(t) and az(t), with

u(t) = σ (au(t)) , r(t) = σ (ar(t)) , z(t) = g (az(t)) .

The model follows the continuous dynamics of the ODE
between events:

fc ≡ τm ċ(t) + u(t) ⊙ (c(t)− z(t)) ,

faX
≡ τs ȧX(t) + aX(t) + bX = 0 , X ∈ {u, r, z} ,

where τs and τm are time constants and the initial condi-
tions are aX(0) = c(0) = 0.
Discrete state transitions occur at event times sk trig-
gered by external events when inputs xi(sk) ̸= 0, or in-
ternal events when any cell state reach a threshold ϑ.

Event-based gradient updates

The adjoint sensitivity method can be used to calculate
gradients of a loss functional with adjoint variables. The
weight updates use only quantities calculated at events,
making them event-based (like in event-prop).

Summary

• We look beyond biologically-plausible spiking neural
networks for neuromorphic hardware.

• We propose the EGRU “spiking” network that is based
on the popular GRU architecture, rather than on bio-
logical details.

• We show state-of-the-art results for DVS gesture
recognition and language modelling tasks.

• The EGRU retains the advantages of activity-sparsity
and event-based computing of SNNs for both infer-
ence and training, with improved task-performance.
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