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Histological Human Brain Sections

e Postmortem human brains

* Fixation in paraffine

e Cut into histological sections

* 6000-8000 sections per brain

e Thickness: 20um

e Staining for cell bodies it Ci=% |
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* Light-microscopic imaging FG2 hOcl ~ —— hOc4d —— hOc5
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e Resolution: 1um/pixel — hIP4 —— hOc3d —— hOc4lp —— hPO1

...... — hIP5
e up to 100'000 x 136'000 pixels

e up to 15 GB per image * Areas defined by the spatial organization of Goal: Automatically identify cytoarchitectonic areas
neurons into layers and columns using deep learning to enable large-scale analysis

 Indicators for connectivity and function

Goal: Study the microstructural organization of

e Microstructural reference for brain atlases [1, 2]

n

the human brain to understand its functions. histoldg'ital brain sectio

Probability-guided Contrastive Feature Learning

Graph Neural Networks for Cytoarchitecture Classification

Idea: Train a neural network to map image patches from Idea: Model cytoarchitecture classification as graph node

similar brain areas to similar feature vectors classification task on approximate brain reconstructions

visual area hOcl E reconstructed

¢1 brain surface

Cytoarchitecture Learning

Graph-based Framework

* Approximately reconstruct brain surface meshes

* Associate mesh nodes with image locations

» Compute deep cytoarchitectonic features

e Add additional features (location, probabilistic

maps, annotations) to graph nodes

e Train graph neural networks (GNNs) to classify

corresponding cytoarchitectonic areas for each

motor area 4a node in the graph [5]
* GNNs combine local local high-resolution image

e Extract image patches from microscopic images

corresponding
image locations "

Training & Evaluation

* Training with categorical cross-entropy using

e Each image patch is associated with a discrete

probability vector over cytoarchitectonic areas features with neighborhood information

* Probability vector indicates how likely a specific

area occurs at a specific location in the brain
e Pairwise similarity weight is defined as cross-

correlation between probability vectors available expert annotations

* High correlation - similar area —» similar features . 1860 sections from 7 brains (80% train, 20% test)

* Low correlation — different area — diferent features e 325 sections from 8th brain (transferability check)

* Contrastive learning: Learn by comparing image Probabilistic maps from Julich-Brain [1] * JURECA-DC [4] (2 nodes, 8 NVidia A100 GPUs)
patches in a training batch [3] indicate the occurence probability of areas « Architecture: Graph Attention (GAT) [6] (3 layers)
* Learned features enable cytoarchitecture classification at different locations » Input: cytoarchitecture features, probability

vectors, canonical spatial coordinates [5]

cytoarchitectonic
features * Performance measurement using macro-F1 score

feature vectors encoded .
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* Graph Neural Networks efficiently integrate local
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 End-to-end learning of image and graph features
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image patch extracted from a ) Lr model

. temperature scaling parameter ’7_  Cluster analysis as basis for data-driven

Macro F1l-scores for known (test) and unknown
(transfer) brains. sup: supervised; cont-sup:

microscopic brain scan

brain parcellation and knowledge discovery

contrastive supervised [5]; cont-pmap: contrastive * Investigation of limited transferability to
pmap; linear: linear classification; GNN: GNN w. _
cytoarchitecture features; GNN+: GNN w. unseen brains
- — — — S cytoarchitecture features, pmaps, and coordinates.
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