
Histological Human Brain Sections
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histological brain section

• Postmortem human brains

• Fixation in paraffine

• Cut into histological sections

   • 6000-8000 sections per brain

   • Thickness: 20μm

• Staining for cell bodies

• Light-microscopic imaging

   • Resolution: 1μm/pixel

   • up to 100'000 x 136'000 pixels

   • up to 15 GB per image

Goal: Study the microstructural organization of 

the human brain to understand its functions.

Probability-guided Contrastive Feature Learning

Idea: Train a neural network to map image patches from

          similar brain areas to similar feature vectors

motor area 4a

visual area hOc1

Probabilistic maps from Julich-Brain [1] 

indicate the occurence probability of areas 

at different locations

Cytoarchitecture Learning

• Extract image patches from microscopic images

• Each image patch is associated with a discrete

   probability vector over cytoarchitectonic areas

• Probability vector indicates how likely a specific

   area occurs at a specific location in the brain

• Pairwise similarity weight is defined as cross-

   correlation between probability vectors

   • High correlation → similar area → similar features

   • Low correlation → different area → diferent features

• Contrastive learning: Learn by comparing image

   patches in a training batch [3]

• Learned features enable cytoarchitecture classification
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Probabiliy-guided Contrastive Loss

• Based on ResNet50

• Custom head to account

   for large input image size

• Input size: 2048px@2μm/px

• Batch size: 2048 images

• Projection head [3]

• 3679 brain sections (8 brains)

• Hardware configuration

   • JURECA-DC [4] (16 nodes)

   • GPUs: 64 NVidia A100

   • Training time: 18 hours

Training & Neural Network Architecture
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Graph Neural Networks for Cytoarchitecture Classification
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Conclusion & Future Work
• Probability-guided contrastive learning

   enables learning of useful cytoarchitectonic

   features without annotated training data

• Graph Neural Networks efficiently integrate local

   features from high-resolution images with

   neighborhood information encoded in graphs

• Future work

   • End-to-end learning of image and graph features

   • Cluster analysis as basis for data-driven

      brain parcellation and knowledge discovery

   • Investigation of limited transferability to

      unseen brains

Macro F1-scores for known (test) and unknown 
(transfer) brains. sup: supervised; cont-sup: 
contrastive supervised [5]; cont-pmap: contrastive 
pmap; linear: linear classification; GNN: GNN w. 
cytoarchitecture features; GNN+: GNN w. 
cytoarchitecture features, pmaps, and coordinates.  

Graph-based Framework
• Approximately reconstruct brain surface meshes

• Associate mesh nodes with image locations

• Compute deep cytoarchitectonic features

• Add additional features (location, probabilistic

   maps, annotations) to graph nodes

• Train graph neural networks (GNNs) to classify

   corresponding cytoarchitectonic areas for each

   node in the graph [5]

• GNNs combine local local high-resolution image

   features with neighborhood information

Training & Evaluation
• Training with categorical cross-entropy using

   available expert annotations

• 1860 sections from 7 brains (80% train, 20% test)

• 325 sections from 8th brain (transferability check)

• JURECA-DC [4] (2 nodes, 8 NVidia A100 GPUs)

• Architecture: Graph Attention (GAT) [6] (3 layers)

• Input: cytoarchitecture features, probability

   vectors, canonical spatial coordinates [5]

• Performance measurement using macro-F1 score
cytoarchitectonic
features
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Cytoarchitectonic Brain Areas

• Areas defined by the spatial organization of

   neurons into layers and columns

• Indicators for connectivity and function

• Microstructural reference for brain atlases [1, 2]

Goal: Automatically identify cytoarchitectonic areas

using deep learning to enable large-scale analysis

Challenges: limited annotations; complex and 

ambiguous structures; multi-scale patterns; artifacts
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Idea: Model cytoarchitecture classification as graph node

         classification task on approximate brain reconstructions
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