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Abstract and Contribution
Aim:

• Automatically understanding complex visual scenes
from RGB images

• → Semantic segmentation (pixel-wise classification of
the image) with deep neural networks (DNNs)

Challenges:

• Neural networks need plenty of labeled images to
generalize well on unseen scenes

• Manual label process is time and cost consuming

Solutions:

• Simulations of urban scenes were developed and im-
proved

• Images generated by a simulation often come with
labels for the semantic content for free [2]

• But: Domain gap to the real world – switching do-
mains confuses the DNN

• Domain adaptation methods to mitigate the gap, e.g.,
Image-to-image translation

Our main contributions are:

• A semi-supervised domain adaptation method for
semantic segmentation to guide the generator of a
generative adversarial network (GAN) to downstream
task awareness [3].

• Enrichment of synthetic data with photo-realistic ap-
pearance to increase the amount of training images
for the supervised learning task and hence improve
its performance.

GAN Concept

Computational cost

DNN time per epoch

Deeplabv3-ResNet101 [4] 45 min
CycleGAN [5] 16 min
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Concept of Task Aware Generator [3] (Real2Sim)
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Enhancement of synthetic images (Sim2Real)
Generation of high-resolution photo-realistic images by conditioning the input of
the adversarial network on the corresponding semantic label maps with pix2pixHD [6]
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Architecture of conditional GAN. According to: [7].

Sim2Real – Results on Semantic Segmentation
Network: Deeplab V3+ with WideResNet38 backbone [8] trained on Cityscapes [9]
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