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Abstract *

Magnetic exchanges in BdG

Magnetic impurities coupled to superconductors give
rise to a plethora of rich physics such as sub-gap states
like Yu-Shiba-Rusinov states and Majorana zero modes,
which constitute key mechanisms on the road towards a
topological quantum computer. The interplay of spin-
orbit coupling and (non-collinear) magnetism enrich the
complexity and topological nature of the in-gap states
hosted in proximity-induced super-conductors.
However, little is known about the impact of
superconductivity on the different contributions to the
magnetic exchange interactions, like the bilinear
isotropic exchange and the Dzyaloshinskii-Moriya
interaction — and in turn the impact on the magnetic
textures. In this work, we propose a method for the
extraction of the tensor of exchange interactions in the
superconducting regime as described in the framework
of the Bogoliubov-de Gennes method. We propose Mn
monolayers deposited on the Nb(110) surface as

prototypical test systems based on our multi-orbital
tight-binding code TITAN.

Tight-binding framework

TITAY
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TITAN is a powerful multi-orbital tight-binding
software developed to investigate ground state,
excitations and magnetic properties. We recently
included a superconducting module, it’s non-
superconducting Hamiltonian is
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Were €i is the direction of the magnetic moment at site
i. The adequate parameters for the Hamiltonian can
be obtained from first principles.

To render the Hamiltonian superconducting we
added a BCS term and used a mean-field

approximation
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Where the gap parameter is defined as
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To diagonalize the Hamiltonian we perform a
Bogoliuvob-Valatin transtformation, from particle to
particle-antiparticle space
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This leads to the Bogoliubov-de Gennes (BdG)

equations Z HYMY §i, = Endiv
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The Hamiltonian in these equations is
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There is a inherent electron-hole block structure in this
matrix that we can use for simplicity, namely

= (1 1)
From here we can get the retarded Green function via
Ggac(E+1in) = (E — Hpac +1in) ™
We also divide this matrix in blocks as with the BAG

Hamiltonian Gee  Geh
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The Heisenberg model is commonly used in quantum
mechanics to look at the properties of magnetic
materials. The base is the Hamiltonian
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Where 91 is the tensor of magnetic exchanges. Which
can be separated into isotropic, traceless anisotropic
symmetric, and antisymmetric terms
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We can obtain Jij via the infinitesimal rotations
method*. Were we tilt the magnetic moments at two
sites i and j, and we calculate the energy change
derived from it. This is represented by

The same idea applied with Green functions yields the
equation
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For our case, with the BAG Hamiltonian and the
infinitesimal rotations method we obtain
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For the non-superconducting case we recover the
original equation.

* AL Liechtenstein et al., ]. Magn. Magn. Mater., 67 (1), 65-74 (1987)

Superconducting gap parameter

We chose to explore a system of a 5-atom
superconducting Nb (110) slab with a magnetic
monolayer of Mn (110) on top. This system has been
studied recently and its magnetic ground state found
to be row-wise antiferromagnetic®.
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For clean Nb (110) surfaces the superconducting gap
from experimentsisA A =1.53meVat I =1.3K. In
ab-initio calculations the values of i used to match
the experimental A go from 1.11 eVtto 1.17 eV=.

Since M is directly related to the magmtude of A we

took a grid with several values of i to obtain
superconducting gaps of different sizes, which would
allow us to asses the impact of the superconducting
state on the magnetic exchange interactions.
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Impact on the magnetic state

When we check the isotropic part of the tensor of
magnetic exchanges for the normal against the
superconducting regime with the lowest gap
parameter (A = 6.25 meV), we notice minimal changes.
However the magnetic ground state stays the same;
namely, row-wise antiferromagnetic. For large values
(e.g. A =295 meV) the ground state changes to a
ferromagnetic alignment
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We can see this clearly when we analyse the behaviour
of the isotropic part of dij for the first three nearest-
neighbours
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Conclusions

TITAN successfully simulates multi-orbital
superconducting systems with realistic
superconducting gaps, coming from realistic
parameters. We recover the experimental magnetic
ground state and show that there is a phase transition
from antiferro- to ferromagnetic alignment when the
size of the superconducting gap increases.

Outlook

TITAN provides already the possibility of calculating
dynamical magnetic responses in the non-
superconducting regime. In the future we will extend this
capabilities to conduct investigations of these quantities
on superconductors interfaced with magnetic materials.
Another future direction in our sight heads towards
investigations on magnetic nanostructures (chains,
islands, skyrmions) and superconductors with realistic
superconducting gaps. We will analyse the mutual
impact of superconductivity and magnetism.
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