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Hubbard-Model

The (Fermi-)Hubbard-Model describes the interacting behavior of electrons
on a spatial lattice, e.g. a graphene sheet.
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H = −κ
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∑
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Action (derived through Hubbard-Stratonovich transformation)

S [ϕ, κ̃, µ̃] =
1

2Ũ

∑
t,x

ϕ2
x ,t − log det (M [+ϕ,+κ̃,+µ̃] ·M [−ϕ,−κ̃,−µ̃])

Sign-Problem

expectation values and partition function〈
Ô
〉
=

1

Z

∫
Dϕ Ô [ϕ] e−S [ϕ] with Z =

∫
Dϕ e−S [ϕ]

if S [ϕ] ∈ C we need reweighting!〈
Ô
〉
=

∫
Dϕ Ô [ϕ] e−i Im{S [ϕ]}e−Re{S [ϕ]}∫

Dϕ e−i Im{S [ϕ]}e−Re{S [ϕ]} =

〈
Ôe−iSI

〉
R

⟨e−iSI⟩R
In Markov-Chain Monte Carlo calculations the denominator slows down
convergence of the expectation value, thus we need more random samples
for the desired precision. This phenomenon is called Sign-Problem and
prevents the calculation of numerous physical problems.

the Statistical-Power
∣∣〈e−iSI

〉
R

∣∣ is a measure for the severity of the
Sign-Problem.

Method

The Statistical-Power depends on the integration domain and the
Sign-Problem can be completely lifted by contour deformation, thanks to
Cauchy’s theorem and Lefschetz thimbles.

We use neural networks to approximate these favorable manifolds cheaply.

However, the simplest and cheapest contour deformation, a constant
imaginary shift, is often sufficient to reduce the Sign-Problem significantly.
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These plots show how the Sign-Problem scales with the physical parameters and
demonstrate the benefit of a simple imaginary offset.
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Outlook

Find a cheap way to determine the optimal imaginary offset
The benefit of the optimal offset over the easily determined tangent plane
varies strongly, but it has the potential to increase the Statistical-Power by
an order of magnitude in some cases.
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Complex valued neural networks
In our latest paper Marcel Rodekamp introduced complex valued neural
networks for a better volume scaling of the Jacobian
(PhysRevB.106.125139, arXiv:2203.00390v2).

Investigate the fullerenes with varying chemical potential
We look forward to calculate the charge density of these systems and
compare it with our graphene sheet results.

Iterative learning approach for neural network contour deformation
As the Lefschetz thimbles presumably vary smoothly with the physical
parameters, we can retrain a network stepwise for more efficient parameter
parsing.
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