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KMC Model Multi Domain Model

DD current continuity eq.:
DD current density:

TrapTrap, Abraham-Miller:

Trap Assisted Tunneling (TAT):

Drift Diffusion (DD):

WKB approximation:

ElectrodeTrap, Hopping rate:

Occupational probability:

Tunneling current:

3D Poisson eq.:

Fourier‘s heat flow eq.:

Generation rate:

= − −

Recombination rate:

= − −( − )

Diffusion rate:

= −

Poisson equation Potential

Current
calculation

Heat flow equation Temperature

Transition rates, process selection
(generation, recombination, diffusion) 
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Instability Retention

Instability
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Retention

● Experimental read current of ZrO2 based VCM  
 ReRAM in the high resistive state (HRS)
● Overall current distribution stable over time,   
 current of single devices changes and jumps   
 between discrete levels

● Current distribution not stable at comparably large timescales
● Thermally accelerated retention experiments
● Tilt (broadening) and shift of current distribution observed during ‘baking’
►  Read window becomes smaller

● Different diffusion regimes observed in molecular dy-   
 namics simulations for oxygen vacancies in HfO2 [4]
► Introduction of diffusion-limiting domains
► Modelled by boxes with ‘easy’ diffusion inside, but    
 hindered diffusion of oxygen vacancies from box to box

● Investigation of HRS which is most susceptible to insta-  
 bility and retention failures
● Modelled by comparably low number of defects in fila -  
 ment with large gap between filament and electrically   
 active top electrode

● Goal: Explain short-term instability and long-term reten-  
 tion phenomena in the same model by the same physi-  
 cal processes (random distribution and diffusion of    
 oxygen vacancies)

● Read current investigation at   
 room temperature
● Defects jump and rearrange   
 inside boxes, but cannot over-  
 come high barriers (no struc -  
 tural changes)
● Discrete random jumps of cur-  
 rent of single cells due to    
 oxygen vacancy diffusion

● Highest current jumps originate  
 from oxygen vacancy jumps   
 close to filament-gap interface

● Read current distribution stable  
 over time
● Shaping failure can be mod-  
 elled and explained by the    
 random redistribution of oxygen  
 vacancies
● Random diffusion of oxygen va- 
 cancies leads to intrinsic log-  
 normal current distribution

● Simulation of retention phenomena  
 at highly elevated temperatures
● Oxygen vacancies can overcome   
 barriers and also jump from box to  
 box (structural changes)
● Radial diffusion (b) or vertical diffu - 
 sion closing the gap (c) can be    
 reached from initial state (a)
● Usually, superposition of both pro-  
 cesses

● Tilt of distribution (always) and shift  
 of distribution depending on which  
 process dominates (radial diffusion  
 or closing gap)
► Diffusion of oxygen vacancies suffi- 
 cient to explain retention phenom-  
 ena

● Failure of shaping algorithms trying to widen read window
► Current distribution always reverts to intrinsic distribution

● Different possible sources of retention effects in VCM ReRAMs have been investigated. Regions with different diffusion energy 
barrieres have been introduced - here, both instability and retention effects can be explained by one consistent model. 

● Due to the random fluctuations, the read current follows intrinsic statistics. A transition from log-normal to normal statistics is 
observed from HRS towards LRS. The origin of the intrinsic statistics will be further investigated. Connection to the conduction 
mechanism: localized vs delocalized electrons, area vs filamentary switching. Read noise in different oxides will be compared.
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