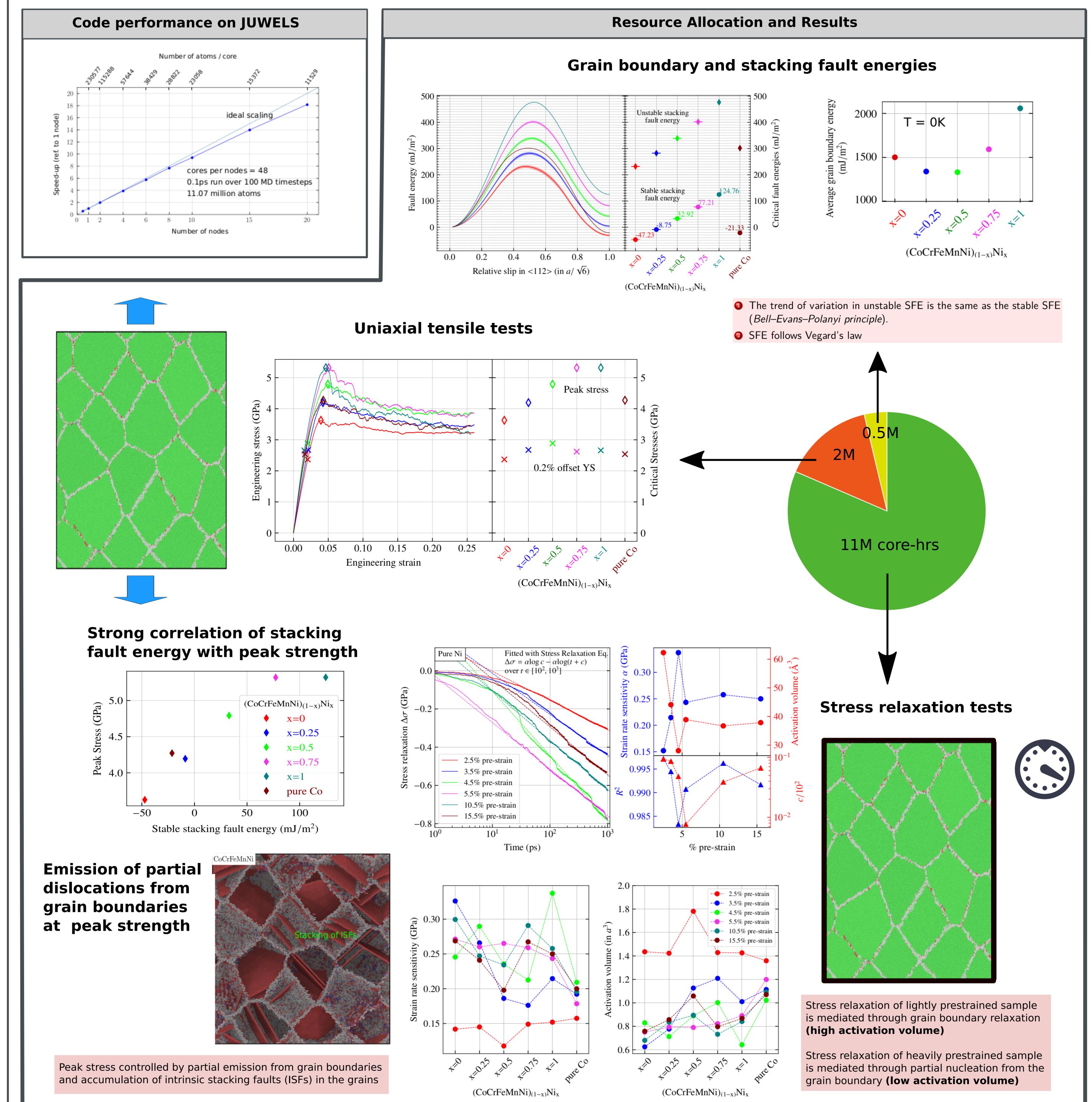
Thermomechanical behaviour of nanocrystalline (CoCrFeMnNi)_{1-x} Ni_x **Complex Concentrated Alloys**


Shankha Nag* Karsten Albe Otto-Berndt-Str. 3 64206 Darmstadt TECHNISCHE UNIVERSITÄT DARMSTADT

This project is funded by DFG Project 388675407

*shankha.nag@tu-darmstadt.de

Overview	Goals of the study	Polycrystalline microstructure
Key Point of Enquiry: Role of changing Ni content on grain boundary state and deformation behaviour in $(CoCrFeMnNi)_{1-x} Ni_x$ polycrystals.	Using Molecular Dynamics and Molecular Statics with open-source molecular dynamics code	Periodic boundary conditions on all sides
Reason for chosing (CoCrFeMnNi) _{1-x} Ni _x series?	 Study deformation mechanisms via uniaxial tensile testing. Calculate grain boundary energy and stacking fault energy. 	54 grains ~ 11 million atoms
 Experimentally, the alloys in the series are known to crystallize into fcc. So we can stick to a single crystal structure in our simulations. 	 Calculate grain boundary energy and stacking fault energy. Calculate strain-rate sentivity and activation volume of stress relaxation in prior strained specimens. 	Different alloys are constructed by changing atom types (microstructure kept fixed)
2. It's known that <i>stacking fault energy</i> transitions from <i>negative in cantor alloy</i> to <i>positive in pure Ni</i> ; leading to changing	4. Explore the microscopic mechanisms behind macroscopic	 fcc atoms
deformation mechanism with varying Ni content.	deformation and then correlate them to intrinsic alloy properties like stacking fault energy.	hcp atoms
 Role of grain boundary state on deformation is yet not fully explored in these systems. 		disordered atoms

