Tropospheric composition in a warmer climate scenarios of extreme weather & pollution IN ECHAM5/MESSy

Tamara Emmerichs¹ and Domenico Taraborrelli¹ IEK-8 Troposphäre, Forschungszentrum Jülich, Jülich, Germany

1. Context & Motivation

- Meteorological extremes are projected to increase in frequency and intensity because of climate warming (Ridder et al., 2022)
 - Meteorology significantly determines tropospheric composition (e.g. Tawfik et al., 2014), also bidirectional land-atmosphere exchanges (e.g. Fares et al., 2012)
 - Important implications for air pollution extremes are expected

2. SCENIC project

Storyline **Scen**arios of Extreme Weather, Climate, and Environmental Events along with their Impacts in a Warmer World

Methods:

Tamara Emmerichs (t.Emmerichs@fz-juelich.de)

3. ECHAM5/MESSy

Model equipment:

Global atmospheric chemistry model (Jöckel et al, 2006)

- Complex atmospheric and aerosol chemistry available
 - Tagging system
- Large set of volatile organic compounds from plant emissions (BVOCs)

Recent and planned developments

• Photosynthesis stomatal model (20 land cover types: IFS Documentation – Cy47r3)

- Separate dynamic and thermodynamic drivers of extremes
 - Selective nudging of atmospheric winds (dynamics) to reproduce past weather extremes
- CCMI forcing towards +2K & +4K warmer climate

Objectives:

- Complement classical climate simulations
- Make climate change more tangible
- Assess the role of surface-atmosphere exchange for air pollution (thermodynamic aspects)

4. Results of soil moisture sensitivity study

Reduced soil moisture stress (Omission of W_{wpw} & entire SM stress, Fig. 1)

- Enhanced evapotranspiration (ET)
 - Low change in 'energy-limited regime' (W_s>W_{cr}, Fig. 1)
 - ii. High change in 'soil moisture-limited regime' (Seneviratne et al. ,2010)
 - \succ Feedback on temperature (T), rel. humidity (RH) and soil moisture (SM)

Omission of wilting point (reduction of SM stress factor by up to ~0.5)

- Direct & indirect change of O₃ dry deposition (Fig. 2)
 - Direct change of dry deposition dominates
 - Increase by ~10%, most pronounced in the Amazon •
 - ii. Locally different changes

No SM stress (reduction of SM stress factor by more than 100%)

Storyline scenarios:

Heat waves/droughts in

a warmer climate

Effect on air pollution

extremes

- more pronounced change patterns (Fig. 3)
 - Direct change of dry deposition dominates
 - Increase by ~20%, most pronounced in the tropics
 - ii. Locally different changes
 - Decrease is most significant in very dry regions (e.g. Australia)
 - Increase is more widespread

- Improved soil moisture response
- O₃ damage function
- Improved soil moisture stress to BVOC emissions

Soil moisture sensitivity study

Global model simulations with ECHAM5/MESSy (T42L31: 310km, up to 10hPa) & standard chemistry (Jöckel et al., 2016),), nudged (BL free) to ERAinterim

Experiments in (boreal) summer 2018:

- a) ref: 'status quo' soil moisture stress
- **b)** wpw: wilting of plants is omitted
- c) SM: soil moisture stress is neglected
- d) Combi: full consideration of soil moisture stress (to the max. photosynthetic activity, mesophyll and stomatal conductance)

Fig. 2: Summer mean change of O_3 dry deposition velocity due to the wilting (*wpw-ref*)

- Increase dominates (e.g. S U.S: $\sim \sqrt{T}$, \uparrow RH, \uparrow SM)
- Low increase of surface O_3 (5-10%) widespread ~ favoured precursor emissions
- Decrease ~ 个dry deposition only in Scandinavia & Canada \succ (significant correlation: $\Delta ddep \sim \Delta O_3$)

Fig 1.: Regions of soil moisture stress factor changes (left, *wpw-ref*) and absolute values (*ref*) in boreal summer

- Strengthen pos. correlation of surface O_3 with dry deposition
- (e.g. Europe) Surface O_3 change of +-5-10%

Combined application of soil moisture stress

- Mesophyll and stomata experience additional SM stress
 - Highest relative changes on max. photosynthetic capacity
 - Stomatal activity overall reduced by up to 30%
 - Enhance ET limitation by soil moisture ('soil moisture-limited regime')
 - \blacktriangleright Significant O₃ increase in different climate regimes (Fig. 3)

Fig. 3: Surface O₃: Summer mean change (top, *combi-ref*) and *ref[~]combi* in April-August 2018 (bottom)

5. Conclusion, Outlook and Acknowledgement

- The Omission of the wilting point decreases the soil moisture stress which significantly reduces O₃ dry deposition. This is most important in the Amazon.
 - The feedback by the changed transpiration have balancing effects. Thus, the slight increase of the surface O₃ mixing ratio correlates most to the changed relative humidity following the transpiration changes.
 - = This soil moisture stress parametrization might be used to avoid shut down of dry deposition (s. Emmerichs et al., 2021).

- The neglection of the total soil moisture stress yield stronger impact patterns compared to the omission of the wilting point. The area of 'energy-limited regimes' is significantly increased which correspond to a decrease of dry climate (in the model).
- The full consideration of soil moisture stress enhances the limitation of transpiration by soil moisture. By this, the global mean stomatal activity is overall reduced by 30 % reduction which yields a significant increase of surface O_{31} in different climate regimes.

<u>Outlook</u>

The current soil moisture stress parametrization is not adequate (Verhoef et al., 2014). Therefore, a parametrization for the leaf water potential is implemented to represent the plant response to the water status.

This work was supported by funding from the Helmholtz Earth & Environment Innovation Pool Project SCENIC. The simulations were performed at the Jülich HPC Systems. This we gratefully acknowledge.

References

- Seneviratne et al (2010): Seneviratne, Sonia I., et al. "Investigating soil moisture-climate interactions in a changing climate: A review." Earth-Science Reviews 99.3-4: 125-161. https://doi.org/10.1016/j.earscirev.2010.02.004.
- Karl et al. (2010): Karl, T., Harley, P., Emmons, L., Thornton, B., Guenther, A., Basu, C., ... & Jardine, K. "Efficient atmospheric cleansing of oxidized organic trace gases by vegetation." Science 330.6005: 816-819. https://doi.org/10.1126/science.1192534
- ECMWF. IFS Documentation CY47R3; IFS Documentation; Chapter 4, ECMWF, 2021. <u>https://doi.org/10.21957/eyrpir4vj</u>
- Jöckel et al. (2006): Jöckel, P.; Sander, R.; Kerkweg, A.; Tost, H.; Lelieveld, J. Technical Note: The Modular Earth System (MESSy) a New Approach towards Earth System Modeling. Atmospheric Chemistry and Physics, 5 (2), 433–444. https://doi.org/10.5194/acp-5-433-2005.
- Jöckel et al. (2016): "Jöckel, P. et al. A. Earth System Chemistry Integrated Modelling (ESCiMo) with the Modular Earth Submodel System (MESSy) Version 2.51". Geosci. Model Dev., 9 (3), 1153–1200. https://doi.org/10.5194/gmd-9-1153-2016.
- Seneviratne et al (2010): Seneviratne, Sonia I., et al. "Investigating soil moisture-climate interactions in a changing climate: A review." Earth-Science Reviews 99.3-4: 125-161. https://doi.org/10.1016/j.earscirev.2010.02.004.
- Emmerichs et al. (2021): Emmerichs, T.; Kerkweg, A.; Ouwersloot, H.; Fares, S.; Mammarella, I.; Taraborrelli, D. "A Revised Dry Deposition Scheme for Land-Atmosphere Exchange of Trace Gases in ECHAM/MESSy v2.54 ". Geoscientific Model Development, 14 (1), 495–519. https://doi.org/10.5194/gmd-14-495-2021.
- Verhoef, A. and Egea, G.: Modeling plant transpiration under limited soil water: Comparison of different plant and soil hydraulic parameterizations for their use in land surface models, Agricultural and Forest Meteorology, 191, 22–32. https://doi.org/10.1016/j.agrformet.2014.02.009.