Exploring the Opportunities of Geostrophic Current Observations from Space in the Joint Estimation of Mean Dynamic Topography and Geoid Undulation

Christian Neyers, Moritz Borlinghaus and Jan Martin Brockmann

Institute of Geodesy and Geoinformation, Theoretical Geodesy Group, University of Bonn

Abstract

The mean dynamic topography (MDT) and the static marine geoid are important reference surfaces for a variety of ocean studies, their computation thus highly valued. Space-based observations of the dynamic topography in terms of surface geostrophic currents bring huge potential for improvements.

In this contribution we simulate the impact of sparsely sampled, line-of-sight (LOS) surface geostrophic current observations as possibly acquired via Sentinel-1's (S1) WV-mode Radial Velocities (RVL) on the joint estimation of a "geodetic" MDT [1] and the geoid's undulation within the parametric least-squares framework [2].

Based on the latest CNES-CLS18 MDT [8] we compute "true" LOS current velocities for one year of Sentinel-1 observation geometry and add reasonably optimistic noise of 0.1 m s^{-1} and 0.25 m s^{-1} [6]. These are directly mapped to the spatial gradient of the parametric MDT model function (a C^1 -smooth Finite Element Space) in terms of observation equations.

We present four regional MDT solutions and their formal errors, all based on ten years of multi-mission altimetry (Jason-1 to 3 and Cryosat-2 L2P by AVISO) supplemented by the GOCO06s gravity field [5], but each differently augmented with (exclusive) information about the MDT.

Parametric Least-Squares for the Geodetic Approach

The results demonstrate that geostrophic RVL as complementary observations significantly improve the separation even with the sparsity of S1's WV-mode.

Model Setup and Input

- MDT: C^1 -smooth Finite Element Space
- Geoid: degree/order 600 Spherical Harmonics
- GOCO06s normal equations (d/o 300)
- About 55 million SSH observations
- SSH = MDT + Geoid + Bias
- About 27k simulated Wave Mode RVL
- LOS projection in Geostrophic Approximation: $u_{\mathbf{r}} = \langle \frac{g}{f} \mathbf{R} \nabla \mathsf{MDT}, \mathbf{r} \rangle$

Results

1) full regularization of MDT's smoothness	2) numerically constrained MDT	3) simulated RVL (0.25 m s ^{-1} SD) + 2)	4) simulated RVL (0.10 m s ^{-1} SD) + 2)
Predicted MDT without RVL, regularized 120°W 90°W 60°W 30°W 0° 30°E 60°E	Predicted MDT without RVL, minimal regularization 120°W 90°W 60°W 30°W 0° 30°E 60°E	Predicted MDT with RVL (25cm/s SD), minimal regularization 120°W 90°W 60°W 30°W 0° 30°E 60°E	Predicted MDT with RVL (10cm/s SD), minimal regularization 120°W 90°W 60°W 30°W 0° 30°E 60°E
80°N	80°N	80°N	N 80°N

Summary and Conclusions

This study demonstrates significant potential of geostrophic RVL observations for the "geodetic" estimation of the MDT.

RVL are straightforward to integrate into the parametric least-squares framework
where available, RVL can successfully "replace" regularization

We therefore strongly recommend further research to enable exploitation of operational surface current products.

- ageostrophic components and disturbing signals require correction and calibration
- S1 L2 processor currently yields insufficiently calibrated RVL [3]
- calibration in post-processing is being developed and evaluated [3, 6, 7]
- EE10 Harmony and EE11 SEASTAR proposals set out to observe vector field current data

References

- [1] Alberta Albertella and Institut für Astronomische und Physikalische Geodäsie, eds. *Dynamic Ocean Topography The Geodetic Approach*. IAPG-FESG-Report No. 27. München: IAPG, Techn. Univ, 2008. 53 pp.
- [2] S. Becker et al. "A Tailored Computation of the Mean Dynamic Topography for a Consistent Integration into Ocean Circulation Models." In: Surveys in Geophysics 35.6 (Nov. 1, 2014), pp. 1507–1525. DOI: 10.1007/s10712–013–9272–9.
- [3] Peureux Charles. S-1A & S-1B Annual Performance Report for 2021. 2021, p. 124.
- [4] CLS. Sentinel-1 Product Definition. S1-RS-MDA-52-7440. Collecte Localisation Satellites (CLS), Mar. 25, 2016, p. 129.
- [5] Andreas Kvas et al. "GOCO06s a Satellite-Only Global Gravity Field Model." In: *Earth System Science Data* 13.1 (Jan. 27, 2021), pp. 99–118. DOI: 10.5194/essd-13-99-2021.
- [6] Adrien C. H. Martin et al. "First Multi-Year Assessment of Sentinel-1 Radial Velocity Products Using HF Radar Currents in a Coastal Environment." In: Remote Sensing of Environment 268 (Jan. 1, 2022), p. 112758. DOI: 10.1016/j.rse.2021.112758.
- [7] A. Moiseev et al. "On Removal of Sea State Contribution to Sentinel-1 Doppler Shift for Retrieving Reliable Ocean Surface Current." In: Journal of Geophysical Research: Oceans 125.9 (2020), e2020JC016288. DOI: 10.1029/2020JC016288.
- [8] Sandrine Mulet et al. "The New CNES-CLS18 Global Mean Dynamic Topography." In: Ocean Science 17.3 (June 17, 2021), pp. 789–808. DOI: 10.5194/os-17-789-2021.

Acknowledgments

This work was financially supported by the DFG project "PArametric determination of the dynamic ocean topography from geoid, altimetric sea surface heights and SAR derived RAdial SURface Velocities – PARASURV" (BR5470/1-1). The authors gratefully acknowledge the Gauss Centre for Supercomputing e.V. (www.gauss-centre.eu) for funding this project by providing computing time through the John von Neumann Institute for Computing (NIC) on the GCS Supercomputer JURECA/JUWELS at Jülich Supercomputing Centre (JSC) and the University of Bonn for access granted to the Bonna cluster. The altimeter products were produced and distributed by Aviso+ (https://www.aviso.altimetry.fr/), as part of the Ssalto ground processing segment.

Institute of Geodesy and Geoinformation Theoretical Geodesy Group University of Bonn **Contact:** Christian Neyers neyers@geod.uni-bonn.de

Nussallee 17 D-53115 Bonn http://www.tg.uni-bonn.de/

