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Motivation and Objectives

* Importance of understanding molecular processes in droplet wetting of a solid surface

* Increasing interest to realistic problems including effects of complex fluids and heterogeneous
rough surfaces

* Development and application of non-equilibrium molecular simulation methods for droplets under
extreme conditions

* Measurement of appropriate quantitative indicators from simulations and comparison with
experiments

* Finding molecular origins of wetting and dewetting phenomena

* Controlling a droplet rebound with a small amount of polymer additives

Computational Methods

* Non-equilibrium Multi-body dissipative particle dynamics (MDPD) simulations
* Attractive force depending on the local particle density
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* w(r): Cut-off functions of repulsive and attractive forces with the cut-off distances, 0.75 and 1.0
* Modified velocity-Verlet algorithm for position-velocity integrations

Results and Discussion

Rebound Suppression by Elastic Pulling of Adsorbed Polymer

* Investigation of polymer effect on a rebound suppression by using non-equilibrium MDPD
simulations

* Small amount of polymer not changing Weber and Reynolds numbers

* Explaining experimental observations of of consistent spreading behavior (spreading diameter) for
different polymer contents

* Main difference observed in the hopping stage

* Slow hopping mechanism: polymers adsorbed on a surface acting as a spring during hopping
(prevailing in smaller droplets)
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Fig. 2 Simulation snapshot of hopping
mechanism

Fig. 1 Spreading factors as a function of
time for different polymer contents in a
droplets

Rebound Suppression by Large Contact Line Friction during Retraction

* Slow retraction mechanism: polymers retarding a retraction by increasing friction at three phase
contact lines (in larger droplets)

* Adsorbed amount of polymer (altered by polymer-surface attraction strength, impact velocity)
affecting both mechanisms

— et e i S —
OO L T N T e

Fig. 3 (left) Simulation snapshots of slow retraction mechanism. Small contact angle by a strong friction manifests
during the retraction. (right) Top view simulation snapshot during the retraction.

* Molecular kinetic theory (MKT) of wetting for contact line friction
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* Relation between contact angle-contact line velocity
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Contact Line Friction and Dynamic Contact Angle by Polymer Adsorption

* Investigation of a contact line friction of a capillary bridge under steady shear using non-equilibrium
MDPD

* Derivation of an equation of molecular kinetic theory of wetting modified by local polymer
concentration adsorbed on a contact line region

HV(COS ge — COS Qd(vcl)) = ]/IV(COS Qe(S) — COS Qe(P)) (rfp(vcl) o Ep,e) + Vi cl(vcl)
where Cd(vd) = %;(Vcl)é;(ls) + %p(vcl)gc(]p)

* Only a receding contact line affected by polymer
* Explaining a slow retraction mechanism of the rebound suppression by polymer without altering
spreading dynamics
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Fig. 6 Friction coefficients calculated from the
local polymer concentration and dynamic
contact angle. Solid line indicates the analytical
prediction of the contact line friction coefficient
above.

Contact Line Dynamics of a Capillary Bridge on a Rough Superhydrophobic
Surface

Fig. 5 Simulation snapshot of a capillary bridge
under steady shear. Polymer molecules are
adsorbed on receding contact lines.

* Investigation of the effect of surface roughness on the contact line dynamics of a capillary bridge in
the Cassie-Baxter superhydrophobic state using non-equilibrium MDPD

* Contact angle hysteresis originating from pinning force as well as shear force from the whole
liquid-solid interface

* Strong liquid/solid interface friction caused by liquid particles slightly penetrating into the grooves
which act like solid particles
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Fig. 7 (Black) Instant contact line friction force
and (red) the distance traveled by contact line
from the position of the reference solid particle
as a function of time

Fig. 8 Particle density map at three different stage of dynamic wetting,
(left) pinning, (center) depinning, and (right) sliding. Red dashed lines
indicate an liquid-vapor interface and colored squares show pillars
moving toward left.

Conclusions

* Droplet rebound can be suppressed by a small amount of polymer additives through slow hopping
and slow retraction mechanisms.

* The amount of polymer adsorption is a key to determine the rebound suppression.

* The friction of the retracting contact line increases due to the adsorbed polymer.

* The contact line friction can be formulated as a function of local polymer concentration at the
contact line.

* The intermediate state between Wenzel and Cassie-Boxter states has to be considered to
understand the contact line friction on a rough surface.
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